Computer Project # 2 *RLC-Circuits*

<u>Goal</u>: Investigate the charge on a capacitor in an *RLC* circuit with varying voltage.

Tools needed: ode45, plot.

Description: If Q(t) = charge on a capacitor at time t in an *RLC* circuit (with *R*, *L* and *C* being the resistance, inductance and capacitance, respectively, and E(t) = applied voltage), then Kirchoff's Laws give the following 2^{nd} order differential equation for Q(t):

Questions: Assume L = 1, $C = \frac{1}{5}$, R = 4 and $E(t) = 10 \cos \omega t$.

- (1) Use ode45 (and plot routines) to plot the solution of (*) with Q(0) = 0 and Q'(0) = 0 over the interval $0 \le t \le 80$ for $\omega = 0, 0.5, 1, 2, 4, 8, 16$.
- (2) Let $A(\omega) = \text{maximum of } |Q(t)|$ over the interval $30 \leq t \leq 80$ (this approximates the amplitude of the steady-state solution). Experiment with various values of ω and discuss what appears to happens to $A(\omega)$ as $\omega \to \infty$ and as $\omega \to 0$. Also, interpret your findings in terms of an equivalent spring-mass system.

<u>Remark</u>: There is an analogy between spring-mass systems and RLC circuits given by :

Spring-Mass System	RLC CIRCUIT
mu''+cu'+ku=F(t)	$LQ''+RQ'+rac{1}{C}Q=E(t)$
u = Displacement	Q = Charge
u' = Velocity	Q' = I = Current
m = Mass	L = Inductance
c = Damping constant	R = Resistance
k = Spring constant	$1/C = (\text{Capacitance})^{-1}$
F(t) = External force	E(t) = Voltage