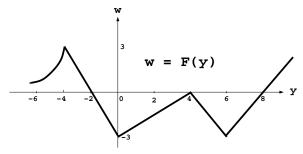
Supplementary Problems

- For what value(s) of A, if any, will $y = Ate^{-2t}$ be a solution of the differential equation $2y' + 4y = 3e^{-2t}$? For what value(s) of B, if any, will $y = Be^{-2t}$ be a solution?
- B Using the substitution u(x) = y + x, solve the differential equation $\frac{dy}{dx} = (y + x)^2$.
- C Using the substitution $u(x) = y^3$, solve the differential equation $y^2 \frac{dy}{dx} + \frac{y^3}{x} = \frac{2}{x^2}$ (x > 0).
- $\boxed{\mathbf{D}}$ Find the explicit solution of the Separable Equation $\frac{dy}{dt} = y^2 4y$, y(0) = 8. What is the largest open interval containing t = 0 for which the solution is defined?
- $\boxed{\mathbf{E}}$ The graph of F(y) vs y is as shown:



- (a) Find the equilibrium solutions of the autonomous differential equation $\frac{dy}{dt} = F(y)$.
- (b) Determine the stability of each equilibrium solution.
- F Solve the differential equation $\frac{dw}{dt} = \frac{2tw}{w^2 t^2}$.
- G (a) If $y' = -2y + e^{-t}$, y(0) = 1 then compute y(1).
 - (b) Experiment using the Euler Method (eul) with step sizes of the form $h = \frac{1}{n}$ to find the smallest integer n which will give a value y_n that approximates the above true solution at t = 1 within 0.05.
- H (a) If $y' = 2y 3e^{-t}$, y(0) = 1 then compute y(1).
 - (b) Experiment using the Euler Method (**eul**) with step sizes of the form $h = \frac{1}{n}$ to find the smallest integer n which will give a value y_n that approximates the above true solution at t = 1 within 0.05.

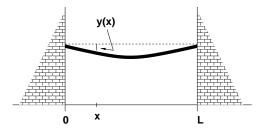
- I Approximation methods for differential equations can be used to estimate definite integrals:
 - (a) Show that $y(t) = \int_0^t e^{-u^2} du$ satisfies the initial value problem $\frac{dy}{dt} = e^{-t^2}$, y(0) = 0.
 - (b) Use the Euler Method (eul) with $h = \frac{1}{2}$ to approximate the integral $\int_0^2 e^{-u^2} du$.
- Given that the general solution to $t^2y'' 4ty' + 4y = 0$ is $y = C_1t + C_2t^4$, solve the following initial value problem:

$$\begin{cases} t^2y'' - 4ty' + 4y = -2t^2 \\ y(1) = 2 \\ y'(1) = 0 \end{cases}$$

K From the theory of elasticity, if the ends of a horizontal beam (of uniform cross-section and constant density) are supported at the same height in vertical walls, then its vertical dis-

placement y(x) satisfies the Boundary Value Problem $\begin{cases} y^{(4)} = -P \\ y(0) = y(L) = 0 \\ y'(0) = y'(L) = 0 \end{cases}$, where P > 0

is a constant depending on the beam's density and rigidity and L is the distance between supporting walls:



- (a) Solve the above boundary value problem when L=4 and P=24.
- (b) Show that the maximum displacement occurs at the center of the beam $x = \frac{L}{2} = 2$.
- Laplace transforms may be used to find particular solutions to some nonhomogeneous differential equations. Use Laplace fransforms to find a particular solution, $y_p(t)$, of $y'' + 4y = 20 e^t$.

Hint: Solve the initial value problem $\begin{cases} y'' + 4y = 20 e^t \\ y(0) = 0 \\ y'(0) = 0 \end{cases}$.

- Tank # 1 initially contains 50 gals of water with 10 oz of salt in it, while Tank # 2 initially contains 20 gals of water with 15 oz of salt in it. Water containing 2 oz/gal of salt flows into Tank # 1 at a rate of 5 gal/min and the well-stirred mixture flows from Tank # 1 into Tank # 2 at the same rate of 5 gal/min. The solution in Tank # 2 flows out to the ground at a rate of 5 gal/min. If $x_1(t)$ and $x_2(t)$ represent the number of ounces of salt in Tank # 1 and Tank # 2, respectively, SET UP BUT DO NOT SOLVE an initial value problem describing this system.
- If $\vec{\mathbf{x}}^{(1)}(t)$ and $\vec{\mathbf{x}}^{(2)}(t)$ are linearly independent solutions to the 2×2 system $\vec{\mathbf{x}}' = A\vec{\mathbf{x}}$, then the matrix $\Phi(t) = \left(\vec{\mathbf{x}}^{(1)}(t), \vec{\mathbf{x}}^{(2)}(t)\right)$ is called a **Fundamental Matrix** for the system. Find a Fundamental Matrix $\Phi(t)$ of the system $\vec{\mathbf{x}}' = \begin{pmatrix} 4 & -3 \\ 8 & -6 \end{pmatrix} \vec{\mathbf{x}}$.
- Laplace transforms may be used to find solutions to some linear systems of differential equations. Consider the linear system of differential equations: (*) $\begin{cases} x' = x + y \\ y' = 4x + y \end{cases}$ with initial conditions x(0) = 0 and y(0) = 2.
 - (a) Let $X(s) = \mathcal{L}\{x(t)\}$ and $Y(s) = \mathcal{L}\{y(t)\}$ be the Laplace transforms of the functions x(t) and y(t), respectively. Take the Laplace transform of each of the differential equations in (*) and solve for X(s) (i.e., eliminate Y(s)).
 - (b) Using the function X(s) from (a), determine x(t).
 - (c) Use the expression for x(t) and the first equation in (*) to determine y(t).
- \mathbf{P} Find a particular solution $\vec{\mathbf{x}}_p(t)$ of these nonhomogeneous systems:

(a)
$$\vec{\mathbf{x}}' = \begin{pmatrix} 1 & 0 \\ 2 & -3 \end{pmatrix} \vec{\mathbf{x}} + \begin{pmatrix} 5 e^{2t} \\ 3 \end{pmatrix}$$

(b)
$$\vec{\mathbf{x}}' = \begin{pmatrix} 1 & 0 \\ 2 & -3 \end{pmatrix} \vec{\mathbf{x}} + \begin{pmatrix} 10 \cos t \\ 0 \end{pmatrix}$$