MA 15200 Lesson 31, Section 4.4

An exponential equation is an equation with a variable in one of its exponents.
A logarithmic equation is an equation with one or more logarithmic expressions that contain a variable.

Ex 1: Solve each equation. Approximate to 4 decimal places, if necessary.
a) $8^{x-2}=2^{2 x}$
b) $\quad 3^{x^{2}-2 x}=\frac{1}{3}$
c) $9^{x}=13$
d) $10^{x-1}=25$
e) $e^{3 x-2}-5=256$

Solving logarithmic equations:

I There are two types of logarithmic equations.

1. Type 1

- Express the equation in the form $\log _{b} M=\log _{b} N$, a single logarithm on I each side. You may have to use the properties of logarithms.
- Use the $1-1$ property (If $\log _{b} M=\log _{b} N$, then $M=N$). In other words, I set the arguments equal.
- Solve for the variable.
- Check the proposed solution(s) in the original equation. Arguments should all be positive.

The coefficient of each logarithm should be one.
2. Type 2

- Express the equation in the form $\log _{b} M=c$.
- Rewrite the equation in exponential form $b^{c}=M$
- Solve for the variable.
- Check all proposed solution(s) in the original equation. Arguments should all be positive.

When solving logarithmic equations, always remember that any value for the variable must make any arguments be positive. A logarithm of a negative number does not exist. Any possible solution that makes a 0 or negative argument must be disregarded.

Ex 2: Solve each of these equations.
a) $\log _{2}(x-4)-\log _{2}(3 x-10)=-\log _{2} x$
b) $\quad \ln (3 x+2)=\ln (4 x+10)$
c) $\quad \ln (x-3)=\ln (7 x-23)-\ln (x+1)$

Ex 3: Solve each equation.
a) $\quad 2 \log _{3}(7+x)=4$
b) $\quad \log x+\log (x+9)=1$
c) $\quad 2 \log _{3} x-\log _{3}(x-4)-\log _{3} 2=2$
d) $\quad \log x=1-\log (x-9)$
e) $\quad \log \frac{5 x+2}{2(x+7)}=0$

