

Find any square root(s) of...
100
144
25
400
$\frac{4}{49}$
0.16

Definition of a Square Root
\boldsymbol{C} is a square root of \boldsymbol{a}
if and only if

$$
c^{2}=a
$$

Find any square root(s) of...
-4
-64

Conclusion

- If \boldsymbol{a} is a positive number, there are two square roots; one positive and one negative.
- If \boldsymbol{a} is a negative number, there is no real square root.
- If \mathbf{a} is zero, there is one square root, zero.

Principal Square Root

- The principal square root of a positive number is the positive square root.
- It is indicated by this sign.

Examine these.

$\sqrt{16}=4$,
$-\sqrt{16}=-4$,
$\pm \sqrt{16}=4,-4$
$\sqrt{-16}$ does not exist

Square Root Function

If $r(x)=\sqrt{6 x-3}$, find the following.
$r(2)=\sqrt{6(2)-3}=\sqrt{12-3}=\sqrt{9}=3$
$r(-1)=$
$r(4)=$

Square Root Function
If $r(x)=\sqrt{6 x-3}$, find the following.
$r(2)=\sqrt{6(2)-3}=\sqrt{12-3}=\sqrt{9}=3$
$r(-1)=$
$r(4)=$

Find the following.

$$
\begin{array}{rlr}
-\sqrt{9}= & \sqrt{0.16}= \\
\sqrt{\frac{25}{64}}= & -\sqrt{121}= \\
\sqrt{324}= & -\sqrt{\frac{121}{81}}=
\end{array}
$$

$f(t)=\sqrt{3 t-2} \quad$ Find...
$f(1)$
$f(2)$
$f(9)$
$f(-3)$

Notice: An 'odd' root of a negative value is real. An 'even' root of a negative does not exist.

$\sqrt[n]{a^{k}}=a^{k \div n}$

Find the following.

$$
\begin{array}{ll}
\sqrt{x^{2}}=x & \sqrt{r^{6}}= \\
\sqrt[3]{m^{3}}= & \sqrt[3]{a^{9}}=a^{3} \\
\sqrt[4]{n^{4}}=n & \sqrt[5]{t^{10}}=
\end{array}
$$

Find the following.
Assume all variables are positive.

$$
\begin{aligned}
& \sqrt{x^{10}}= \\
& \sqrt{(x+1)^{2}}= \\
& \sqrt{25 t^{4}}=
\end{aligned}
$$

$$
\begin{aligned}
& \sqrt{(8 m)^{4}}= \\
& \sqrt[4]{81 x^{12}}= \\
& \sqrt[4]{a^{20}}=
\end{aligned}
$$

$$
\sqrt{(a+b+c)^{6}}=
$$

