Formula Sheet for the Final Exam

1. Circle: $(x-h)^{2}+(y-k)^{2}=r^{2}$
2. Parabola (Quadratic function): $y=f(x)=a(x-h)^{2}+k \quad h=-\frac{b}{2 a}, k=f(h)$ or $k=c-\frac{b^{2}}{4 a}$
3. Distance formula: $d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
4. Quadratic formula: $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$

For the following formulas: S is future value, P is present value, r is the annual interest rate, k is the number of compounding periods in a year, t is time in years, A is the amount of money, and R is the amount of payment; with the formula for the periodic interest rate $i=\frac{r}{k}$.
5. Future Value of an Investment with continuously compounded interest: $S=P e^{r t}$
(The amount at the end of an investment when an amount P is allowed to grow with interest compounded continuously.)
6. Future Value of an Investment: $S=P(1+i)^{k t}$
(The amount at the end of an investment when an amount P is allowed to grow.)
7. Present Value of an Investment: $P=S(1+i)^{-k t}$
(The amount that must be invested now to provide for a future value.)
8. Effective Rate of Interest: $E=(1+i)^{k}-1$
(The effective rate for an account.)
9. Future Value of an Annuity: $S=R\left[\frac{(1+i)^{k t}-1}{i}\right]$
(The amount at the end for an ordinary annuity with regular payments.)
10. Present Value of an Annuity: $P=R\left[\frac{1-(1+i)^{-k t}}{i}\right]$
(The present value of an ordinary annuity with regular payments.)
11. 'Sinking Fund' Payment for an Annuity: $\quad R=\frac{S i}{(1+i)^{k t}-1}$
(The amount of a payment that will provide a future value of an ordinary annuity.)
12. Amortization Formula (Installment Payments): $R=A\left[\frac{i}{1-(1+i)^{-k t}}\right]$
(The amount of an installment payment when the amount borrowed is A.)

