#### Exam 2

Covers all of Section 6.7, 7.2, 7.3 and all of 7.4



E. None of the above.

2. Given  $\triangle ABC$ , find the values of *t* and *r* approximated to the nearest tenth.



- A. t = 6.0, r = 14.4B. t = 5.6, r = 14.6C. t = 8.7, r = 11.5D. t = 13.7, r = 6.4
  - E. None of the above

- 3. Which of the following is equivalent to  $\cos\left(\theta + \frac{\pi}{3}\right)$ ?
- A.  $\frac{1}{2} \left( \sin \theta + \sqrt{3} \cos \theta \right)$ B.  $\frac{1}{2} \left( \sqrt{3} \cos \theta - \sin \theta \right)$ C.  $\frac{1}{2} \left( \sqrt{3} \sin \theta + \cos \theta \right)$
- D.  $\frac{1}{2} \left( \cos \theta \sqrt{3} \sin \theta \right)$
- E.  $\frac{1}{2}(\sin\theta + \cos\theta)$

### Spring 2010

#### Covers all of Section 6.7, 7.2, 7.3 and all of 7.4

MA 15400

4. An airplane, flying at a speed of 345 miles per hour, flies from point A in the direction 131° for two hours and then flies in the direction 221° for one hour. What direction, to the nearest degree, does the plane need to fly to return to point A?

Exam 2

- A. 346°
- в. 338°
- C. 356°
- D. 328°
- E. None of the above

- 5. A 27 foot ladder is leaning against a building, making a 71° angle with the ground. The bottom of the ladder is then moved 3 feet closer to the building. What angle, to the nearest tenth of a degree, does the ladder now make with the ground?
  - A. 77.6°
    B. 64.6°
    C. 77.2°
    D. 64.1°
    E. None of the above

Exam 2

Covers all of Section 6.7, 7.2, 7.3 and all of 7.4

6. Find all solutions of the equation using *n* as an arbitrary integer.

 $\sec\beta = 2$ 

A. 
$$\beta = \frac{\pi}{3} + 2\pi n, \frac{2\pi}{3} + 2\pi n$$
  
B.  $\beta = \frac{\pi}{6} + 2\pi n, \frac{11\pi}{6} + 2\pi n$   
C.  $\beta = \frac{\pi}{3} + 2\pi n, \frac{5\pi}{3} + 2\pi n$   
D.  $\beta = \frac{\pi}{6} + 2\pi n, \frac{5\pi}{6} + 2\pi n$ 

E. None of the above

7. Find all solutions of the equation using *n* as an arbitrary integer.

$$\tan\left(2\beta - \frac{\pi}{6}\right) = \frac{1}{\sqrt{3}}$$

A. 
$$\beta = \frac{\pi}{8} + \frac{\pi}{4}n$$
  
B. 
$$\beta = \frac{\pi}{6} + \frac{\pi}{2}n$$
  
C. 
$$\beta = \frac{\pi}{12} + \frac{\pi}{4}n$$
  
D. 
$$\beta = \frac{\pi}{4} + \frac{\pi}{2}n$$

Exam 2

Covers all of Section 6.7, 7.2, 7.3 and all of 7.4

8. Find all solutions of the equation in the interval  $[0, 2\pi)$ .

$$\cos\left(3x + \frac{\pi}{2}\right) = -1$$

A. 
$$x = \frac{\pi}{2}, \frac{7\pi}{6}, \frac{11\pi}{6}$$
  
B.  $x = \frac{\pi}{3}, \pi, \frac{5\pi}{3}$   
C.  $x = 0, \frac{2\pi}{3}, \frac{4\pi}{3}$   
D.  $x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$ 

E. None of the above

9. Find all solutions of the equation in the interval  $[0, 2\pi)$ .

 $2\sin^2 t - 5\sin t + 2 = 0$ 

A. 
$$t = \frac{\pi}{6}, \frac{5\pi}{6}$$
  
B.  $t = \frac{\pi}{3}, \frac{5\pi}{3}$   
C.  $t = \frac{2\pi}{3}, \frac{4\pi}{3}$   
D.  $t = \frac{7\pi}{6}, \frac{11\pi}{6}$ 

MA 15400Exam 2<br/>Covers all of Section 6.7, 7.2, 7.3 and all of 7.4Spring 201010.Express as a trigonometric function of one angle.<br/> $\cos(50^{\circ})\cos(13^{\circ}) - \sin(50^{\circ})\sin(13^{\circ})$ A.  $\sin(63^{\circ})$ A.  $\sin(63^{\circ})$ B.  $\cos(37^{\circ})$ C.  $\sin(37^{\circ})$ D.  $\cos(63^{\circ})$ 

E. None of the above

11. If  $\alpha$  and  $\beta$  are third-quadrant angles, such that  $\csc \alpha = -8$  and  $\tan \beta = \frac{4}{3}$ , find  $\sin(\alpha + \beta)$ .

A. 
$$\frac{3+4\sqrt{63}}{40}$$
  
B.  $\frac{3\sqrt{63}-4}{40}$   
C.  $\frac{3-4\sqrt{63}}{40}$   
D.  $\frac{3\sqrt{63}+4}{40}$ 

#### Exam 2

Covers all of Section 6.7, 7.2, 7.3 and all of 7.4

- 12. The angle of elevation from point A of the top of a tower is 32.1°. From a point B, which is on the same line but 55.5 feet closer to the tower, the angle of elevation is 36.5°. Find the height of the tower to the nearest foot.
  - A. 253 feet
  - B. 426 feet
  - C. 229 feet
  - D. 384 feet
  - E. None of the above

- 13. If a projectile is fires from level ground with an initial velocity of *v* ft/sec and at an angle of  $\theta$  degrees with the horizontal, the range *R* of the projectile is given by the formula  $R = \frac{v^2}{16} \sin \theta \cos \theta$ , If *v* = 65 ft/sec and  $\theta = 31^\circ$ , approximate, to the nearest foot, the range of the projectile.
  - A. 103 *ft*
  - B. 117 ft
  - C. 146 ft
  - D. 161 ft
  - E. None of the above

## Exam 2

Spring 2010

Covers all of Section 6.7, 7.2, 7.3 and all of 7.4

14. Find the exact value of 
$$\cos(2\theta)$$
 if  $\tan \theta = \frac{-5}{7}$ , and  $270^\circ < \theta < 360^\circ$ 

A. 
$$\frac{-12}{37}$$
  
B.  $\frac{-35}{37}$   
C.  $\frac{12}{37}$   
D.  $\frac{35}{37}$ 

E. None of the above

15. Find all the solutions of the equation in the interval  $[0, 2\pi)$ .

$$\sin(2t) + \sin(t) = 0$$

A. 
$$0, \pi, \frac{\pi}{3}, \frac{5\pi}{3}$$
  
B.  $\frac{\pi}{2}, \frac{3\pi}{2}, \frac{\pi}{3}, \frac{5\pi}{3}$   
C.  $\frac{\pi}{2}, \frac{3\pi}{2}, \frac{2\pi}{3}, \frac{4\pi}{3}$   
D.  $0, \pi, \frac{2\pi}{3}, \frac{4\pi}{3}$ 

# Exam 2

Covers all of Section 6.7, 7.2, 7.3 and all of 7.4

## Exam 2 Answers

| Question | Answer |                                                                 |
|----------|--------|-----------------------------------------------------------------|
| 1.       | E      | $x = 9\sqrt{3}, y = 18$                                         |
| 2.       | В      | t = 5.6, r = 14.6                                               |
| 3.       | D      | $\frac{1}{2} \left( \cos \theta - \sqrt{3} \sin \theta \right)$ |
| 4.       | В      | 338°                                                            |
| 5.       | А      | 77.6°                                                           |
| 6.       | С      | $\beta = \frac{\pi}{3} + 2\pi n, \frac{5\pi}{3} + 2\pi n$       |
| 7.       | В      | $\beta = \frac{\pi}{6} + \frac{\pi}{2}n$                        |
| 8.       | D      | $x = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}$             |
| 9.       | A      | $t = \frac{\pi}{6}, \frac{5\pi}{6}$                             |
| 10.      | D      | $\cos(63^{\circ})$                                              |
| 11.      | A      | $\frac{3+4\sqrt{63}}{40}$                                       |
| 12.      | С      | 229 feet                                                        |
| 13.      | В      | 117 <i>ft</i>                                                   |
| 14.      | С      | $\frac{12}{37}$                                                 |
| 15.      | D      | $0,\pi,\frac{2\pi}{3},\frac{4\pi}{3}$                           |