Name: _____

Student ID number: _____

Instructions:

- 1. Please fill in the above information. There are 7 problems.
- 2. You must show sufficient work to justify all answers. Correct answers with insufficient work will not receive full credit. Partial credit may be obtained provided sufficient work is shown.
- 3. No books, notes or papers may be used.
- 4. Only non-programmable, non-graphing calculator may be used.
- 5. The exam is self-explanatory. Please do not ask the instructor to interpret any of the exam questions.
- 6. Write your final answer in the box provided.
- 7. Good luck!

Problem #	Max possible	Your score
1	10	
2	18	
3	16	
4	10	
5	15	
6	15	
7	16	
Total	100	

1. [10pts] Find the equation of tangent line of the curve $x^3 + y^3 = 9$ at point (1,2).

2.[18 pts] Find the derivative of following functions:

(a)[9pts] $f(x) = x^3 e^{-x}$

f'(x) =

(b)[9pts]
$$g(x) = \ln \frac{x^2 + 1}{x}$$

g'(x) =

3. (a)[10pts] Find the linearization of $f(x) = \sqrt{x}$ at a = 100.

L(x) =		

(b) [6pts] Approximate $\sqrt{98.9}$ by using linearization.

 $\sqrt{98.9} \approx$

4. [10pts] Solve *t* from the equation:

$$\frac{400}{5+2e^{5t}} = 50$$

<i>t</i> =		

5. [15 pts] An apple orchard has an average yield of 40 bushels of apples/tree if tree density is 10 trees/acre. For each unit increase in tree density, the yield decreases by 1 bushel. How many trees should be planted in order to maximize the yield?

6. [15 Pts] If an open box is made from a square tin sheet (6 in. by 6 in.) by cutting out identical squares from each corner and bending up the resulting flaps, what dimensions will yield a box of maximum volume?

7. [16 pts] Limited Population Growth. A lake is stocked with 200 fish of a new variety. The size of the lake, the availability of food, and the number of other fish restrict growth in the lake to a limiting value of 400. The population of fish in the lake after time t, in months, is given by

$$P(t) = \frac{400}{1 + e^{-0.5t}}$$

(a) [6pts] Find the population after 4 months (at t = 4).

(b) [10pts] Find the growth rate P'(t)

P'(t) =