[10pts] 1. Find the area under the graph over the interval $[-1,3]$, where

$$
f(x)=\left\{\begin{array}{lrr}
x^{2}+1, & \text { if } & x<1 \\
2, & \text { if } & x \geq 1
\end{array}\right.
$$

Area=
[24pts] 2. Evaluate using a substitution
(1) $\int 3 t e^{-t^{2}} d t$
(2) $\int \frac{\ln (2 x)}{x} d x$
(3) $\int_{0}^{2} x\left(x^{2}+1\right)^{4} d x$
[24 pts] 3. Evaluate using integration by parts.
(1) $\int(x+2) \ln x d x$
(2) $\int_{0}^{\pi / 2} 2 x \cos x d x$
(3) $\int x e^{-2 x} d x$
[16 pts] 4. Find the volume generated by revolving about the x -axis the regions bounded by the graphs of the following equations.
(1). $y=e^{-x}, x=-1, \quad x=2$

$$
V=
$$

(2). $y=x^{3}, x=0, \quad x=4$

$$
V=
$$

[16pts]5. Determine whether the improper integral is convergent or divergent, and calculate its value if it is divergent.
(1). $\int_{2}^{\infty} \frac{1}{x^{3}} d x$
(2). $\int_{1}^{\infty} e^{3 x} d x$
[10pts] 6. Tree growth. The diameter of a tree grows at the rate of

$$
D^{\prime}(t)=0.35+0.001 t
$$

Where $D(t)$ is the diameter of the trunk of the tree in inches t years after 1910. In 1910, the tree had a diameter of 2 in . What will the diameter of the tree be in 2010 ?

