Study Guide # 3

You also need Study Guides # 1 and # 2 for the Final Exam

1. Cylindrical Coordinates (r, θ, z) :

Going from RC to CC use $x^2 + y^2 = r^2$ and $\tan \theta = \frac{y}{x}$ (make sure θ is in correct quadrant).

2. Spherical Coordinates (ρ, θ, ϕ) , where $0 \le \phi \le \pi$:

From SC to RC :
$$\begin{cases} x = (\rho \sin \phi) \cos \theta \\ y = (\rho \sin \phi) \sin \theta \\ z = \rho \cos \phi \end{cases}$$

Going from RC to SC use $x^2 + y^2 + z^2 = \rho^2$, $\tan \theta = \frac{y}{x}$ and $\cos \phi = \frac{z}{\rho}$.

3. Triple integrals in Cylindrical Coordinates: $\begin{cases} x = r \cos \theta \\ y = r \sin \theta \\ z = z \end{cases}, \quad dV = r dz dr d\theta$

$$\iiint_{E} f(x, y, z) \ dV = \iiint_{E} f(r \cos \theta, r \sin \theta, z) r \, dz \, dr \, d\theta$$

4. Triple integrals in Spherical Coordinates: $\begin{cases} x = (\rho \sin \phi) \cos \theta \\ y = (\rho \sin \phi) \sin \theta \\ z = \rho \cos \phi \end{cases}, \quad dV = \rho^2 \sin \phi \ d\rho \, d\phi \, d\theta$

$$\iiint_E f(x, y, z) \ dV = \iiint_E f(\rho \sin \phi \cos \theta, \ \rho \sin \phi \sin \theta, \ \rho \cos \phi) \ \rho^2 \sin \phi \ d\rho \ d\phi \ d\theta$$

5. Vector fields on \mathbb{R}^2 and \mathbb{R}^3 : $\vec{\mathbf{F}}(x,y) = \langle P(x,y), Q(x,y) \rangle$ and $\vec{\mathbf{F}}(x,y,z) = \langle P(x,y), Q(x,y), R(x,y) \rangle$; $\vec{\mathbf{F}}$ is a conservative vector field if $\vec{\mathbf{F}} = \nabla f$, for some real-valued function f.

6. Line integral of a function f(x,y) along C, parameterized by x=x(t), y=y(t) and $a \le t \le b$, is

$$\int_C f(x,y) \ ds = \int_a^b f(x(t), y(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2} \ dt \ .$$

(independent of orientation of C, other properties and applications of line integrals of f)

Remarks:

(a) $\int_C f(x,y) ds$ is sometimes called the "line integral of f with respect to arc length"

(b)
$$\int_C f(x,y) dx = \int_a^b f(x(t), y(t)) x'(t) dt$$

(c)
$$\int_C f(x,y) dy = \int_a^b f(x(t), y(t)) y'(t) dt$$

7. Line integral of vector field $\vec{\mathbf{F}}(x,y)$ along C, parameterized by $\vec{\mathbf{r}}(t)$ and $a \leq t \leq b$, is given by

$$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{a}^{b} \vec{\mathbf{F}}(\vec{\mathbf{r}}(t)) \cdot \vec{\mathbf{r}}'(t) dt.$$

(depends on orientation of C, other properties and applications of line integrals of f)

8. Connection between line integral of vector fields and line integral of functions:

$$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{C} (\vec{\mathbf{F}} \cdot \vec{\mathbf{T}}) \, ds$$

where $\vec{\mathbf{T}}$ is the unit tangent vector to the curve C.

9. If
$$\vec{\mathbf{F}}(x,y) = P(x,y)\vec{\mathbf{i}} + Q(x,y)\vec{\mathbf{j}}$$
, then $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_C P(x,y) dx + Q(x,y) dy$; Work $= \int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$.

10. Fundamental Theorem of Calculus for Line Integrals: $\int_C \nabla f \cdot d\vec{\mathbf{r}} = f(\vec{\mathbf{r}}(b)) - f(\vec{\mathbf{r}}(a))$:

- **11.** A vector field $\vec{\mathbf{F}}(x,y) = P(x,y)\vec{\mathbf{i}} + Q(x,y)\vec{\mathbf{j}}$ is conservative (i.e. $\vec{\mathbf{F}} = \nabla f$) if $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$; how to determine a potential function f if $\vec{\mathbf{F}}(\vec{\mathbf{x}}) = \nabla f(\vec{\mathbf{x}})$.
- **12.** Green's Theorem: $\int_C P(x,y) dx + Q(x,y) dy = \iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dA$ (C = boundary of D):

13. Del Operator:
$$\frac{\partial}{\partial x}\vec{\mathbf{i}} + \frac{\partial}{\partial y}\vec{\mathbf{j}} + \frac{\partial}{\partial z}\vec{\mathbf{k}}$$
; if $\vec{\mathbf{F}}(x,y,z) = P(x,y,z)\vec{\mathbf{i}} + Q(x,y,z)\vec{\mathbf{j}} + R(x,y,z)\vec{\mathbf{k}}$, then

$$\operatorname{curl} \vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} \quad \text{and} \quad \operatorname{div} \vec{\mathbf{F}} = \nabla \cdot \vec{\mathbf{F}} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

Properties of curl and divergence:

- (i) If curl $\vec{\mathbf{F}} = \vec{\mathbf{0}}$, then $\vec{\mathbf{F}}$ is a conservative vector field (i.e., $\vec{\mathbf{F}}(\vec{\mathbf{x}}) = \nabla f(\vec{\mathbf{x}})$).
- (ii) If curl $\vec{\mathbf{F}} = \vec{\mathbf{0}}$, then $\vec{\mathbf{F}}$ is *irrotational*; if div $\vec{\mathbf{F}} = 0$, then $\vec{\mathbf{F}}$ is *incompressible*.

(iii) Laplace's Equation:
$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0.$$

14. Parametric surface $S: \vec{\mathbf{r}}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$, where $(u,v) \in D$:

Normal vector to surface $S: \vec{\mathbf{n}} = \vec{\mathbf{r}}_u \times \vec{\mathbf{r}}_v$; tangent planes and normal lines to parametric surfaces.

15. Surface area of a surface S:

(i)
$$A(S) = \iint_D |\vec{\mathbf{r}}_u \times \vec{\mathbf{r}}_v| dA$$

(ii) If S is the graph of
$$z = f(x, y)$$
 above D, then $A(S) = \iint_D \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} dA$;

3

<u>Remark</u>: $dS = |\vec{\mathbf{r}}_u \times \vec{\mathbf{r}}_v| dA = \text{differential of surface area; while } d\vec{\mathbf{S}} = (\vec{\mathbf{r}}_u \times \vec{\mathbf{r}}_v) dA$

16. The surface integral of f(x, y, z) over the surface S:

(i)
$$\iint_{S} f(x, y, z) dS = \iint_{D} f(\vec{\mathbf{r}}(u, v)) |\vec{\mathbf{r}}_{u} \times \vec{\mathbf{r}}_{v}| dA.$$

(ii) If S is the graph of z = h(x, y) above D, then

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(x, y, h(x, y)) \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} dA.$$

17. The surface integral of $\vec{\mathbf{F}}$ over the surface S (recall, $d\vec{\mathbf{S}} = (\vec{\mathbf{r}}_u \times \vec{\mathbf{r}}_v) \ dA$):

$$\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iint_{D} \vec{\mathbf{F}} \cdot (\vec{\mathbf{r}}_{u} \times \vec{\mathbf{r}}_{v}) \, dA.$$

$$\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iint_{S} (\vec{\mathbf{F}} \cdot \vec{\mathbf{n}}) \ dS = \iint_{D} \vec{\mathbf{F}} \cdot (\vec{\mathbf{r}}_{u} \times \vec{\mathbf{r}}_{v}) \ dA.$$

(i) Connection between surface integral of a vector field and a function:

$$\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iint_{S} (\vec{\mathbf{F}} \cdot \vec{\mathbf{n}}) \ dS.$$

(The above gives another way to compute $\iint_S \vec{\mathbf{F}} \cdot \, d\vec{\mathbf{S}})$

(ii) $\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iint_{S} (\vec{\mathbf{F}} \cdot \vec{\mathbf{n}}) dS = \underline{\text{flux}} \text{ of } \vec{\mathbf{F}} \text{ across the surface } S.$

18. Stokes' Theorem: $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \iint_S \operatorname{curl} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$ (recall, $\operatorname{curl} \vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}}$).

 $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = circulation \text{ of } \vec{\mathbf{F}} \text{ around } C.$

19. The Divergence Theorem/Gauss' Theorem: $\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iiint_{E} \operatorname{div} \vec{\mathbf{F}} \ dV$ (recall, $\operatorname{div} \vec{\mathbf{F}} = \nabla \cdot \vec{\mathbf{F}}$).

${\bf 20.}$ Summary of Line Integrals and Surface Integrals:

Line Integrals	Surface Integrals
$C: \vec{\mathbf{r}}(t)$, where $a \leq t \leq b$	$S: \vec{\mathbf{r}}(u, v), \text{ where } (u, v) \in D$
$ds = \vec{\mathbf{r}}'(t) dt = \text{differential of arc length}$	$dS = \vec{\mathbf{r}}_u \times \vec{\mathbf{r}}_v dA = \text{ differential of surface area}$
$\int_C ds = \text{length of } C$	$\iint_{S} dS = \text{ surface area of } S$
$\int_C f(x, y, z) ds = \int_a^b f(\vec{\mathbf{r}}(t)) \vec{\mathbf{r}}'(t) dt$	$\iint_{S} f(x, y, z) dS = \iint_{D} f(\vec{\mathbf{r}}(u, v)) \vec{\mathbf{r}}_{u} \times \vec{\mathbf{r}}_{v} dA$
(independent of orientation of C)	(independent of normal vector $\vec{\mathbf{n}}$)
$d\vec{\mathbf{r}} = \vec{\mathbf{r}}'(t) dt$	$d\vec{\mathbf{S}} = (\vec{\mathbf{r}}_u \times \vec{\mathbf{r}}_v) \ dA$
$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{a}^{b} \vec{\mathbf{F}}(\vec{\mathbf{r}}(t)) \cdot \vec{\mathbf{r}}'(t) dt$	$\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iint_{D} \vec{\mathbf{F}}(\vec{\mathbf{r}}(u,v)) \cdot (\vec{\mathbf{r}}_{u} \times \vec{\mathbf{r}}_{v}) \ dA$
(depends on orientation of C)	(depends on normal vector $\vec{\mathbf{n}}$)
$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{C} \left(\vec{\mathbf{F}} \cdot \vec{\mathbf{T}} \right) ds$	$\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iint_{S} (\vec{\mathbf{F}} \cdot \vec{\mathbf{n}}) dS$
The <i>circulation</i> of $\vec{\mathbf{F}}$ around C	The flux of $\vec{\mathbf{F}}$ across S in direction $\vec{\mathbf{n}}$

21. Integration Theorems:

Fundamental Theorem of Calculus: $\int_a^b F'(x) dx = F(b) - F(a)$

$$\int_{a}^{b} F'(x) dx = F(b) - F(a)$$

Fundamental Theorem of Calculus For Line Integrals: $\int_a^b \nabla f \cdot d\vec{\mathbf{r}} = f(\vec{\mathbf{r}}(b)) - f(\vec{\mathbf{r}}(a))$

$$\int_{a}^{b} \nabla f \cdot d\vec{\mathbf{r}} = f(\vec{\mathbf{r}}(b)) - f(\vec{\mathbf{r}}(a))$$

GREEN'S THEOREM:
$$\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \int_C P(x, y) dx + Q(x, y) dy$$

Stokes' Theorem:
$$\iint_{S} \operatorname{curl} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$$

DIVERGENCE THEOREM:
$$\iiint_E \operatorname{div} \vec{\mathbf{F}} \ dV = \iint_S \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$$

