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CHAPTER 1 First-Order Differential Equations

The following initial-value problem arises in the anal-
ysis of a cable suspended between two fixed points

1
"N _ N2 _ / _
y —a\/1+(y), y(0) =a, y(0)=0,

where a is a nonzero constant. Solve this initial-value
problem for y(x). The corresponding solution curve
is called a catenary.

Consider the general second-order linear differential
equation with dependent variable missing:

'+ p(x)y = qx).

Replace this differential equation with an equivalent
pair of first-order equations and express the solution
in terms of integrals.

Consider the general third-order differential equation
of the form

V" = F(x,y"). (1.11.27)

(a) Show that Equation (1.11.27) can be replaced by
the equivalent first-order system
duy duy dus

_— = , — = , — = F s s
dx "2 dx "3 dx (x, u3)

where the variables u1, ua, uz are defined by

/ 4
ur =y, ux=y, uz=y.

(b) Solve y" = x~1(y" —1).

A simple pendulum consists of a particle of mass m
supported by a piece of string of length L. Assuming
that the pendulum is displaced through an angle 6y
radians from the vertical and then released from rest,

the resulting motion is described by the initial-value
problem
a6 +8sna=0 00 =6 “Loy=0
RN — S1 =V, = , —_— = V.
> L O
(1.11.28)

(a) For small oscillations, § << 1, we can use the
approximation sin =~ 6 in Equation (1.11.28) to
obtain the linear equation

d%o
av. e

6 =0, 0(0) = 6o,
dr*> L 0= b

Solve this initial-value problem for 6 as a function
of ¢. Is the predicted motion reasonable?

(b) Obtain the following first integral of (1.11.28):

deo 2g
I _:I:\/f(cose — cos ). (1.11.29)

(¢) Show from Equation (1.11.29) that the time T
(equal to one-fourth of the period of motion) re-
quired for 6 to go from 0 to 6y is given by the
elliptic integral of the first kind

L [% 1
T = —/ — d6. (1.11.30)
2g Jo +/cos@ — cosby

(d) Show that (1.11.30) can be written as

L (7/? 1
T = /_/ S Y
8 Jo 1 —k2sin?u

where k = sin(6p/2). [Hint: First express cos 6
and cos 6 in terms of sin? (60/2) and sin2(90 /2).]

1.12 Chapter Review

Basic Theory of Differential Equations

This chapter has provided an introduction to the theory of differential equations. A
differential equation involves one or more derivatives of an unknown function, and the
highest-order derivative is the order of the differential equation.

For an nth-order differential equation, the general solution contains » arbitrary con-
stants, and all solutions can be obtained by assigning appropriate values to the constants.
This chapter is concerned mainly with first-order differential equations, which may

be written in the form

dG(O)—O
dr 77
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dy

——=f(xy), (1.12.1)

dx
for some given function f. If we impose an initial condition specifying the value of a
solution y(x) to the differential equation (1.12.1) at a particular point xg, say yo = y(xp),
then we have an initial-value problem:

d
d—y = f(x,y), yo) = Yo. (1.12.2)
X

To solve an initial-value problem of the form (1.12.2), the first step is to determine the
general solution to the differential equation (1.12.1), and then use the initial condition to
determine the specific value of the arbitrary constant appearing in the general solution.

Solution Techniques for First-Order Differential Equations

One of our main goals in this chapter is to find solutions to first-order differential equa-
tions of the form (1.12.1). There are various ways in which we can seek these solutions:

1. Geometrically: The function f(x, y) gives the slope of the tangent line to the
solution curves of the differential equation (1.12.1) at the point (x, y). Thus, by
computing f(x, y) for various points (x, y), we can draw small line segments
through the point (x, y) with slope f(x, y) to depict how a solution curve would
pass through (x, y). The resulting picture of line segments is called the slope field
of the differential equation, and any solution curves to the differential equation in
the xy-plane must be tangent to the slope field at all points.

For example, the differential equation dy/dx = —x/y determines a slope field
consisting of small line segments that encircle the origin. Indeed, the solutions to
this differential equation consist of concentric circles centered at the origin.

One piece of theory is that different solution curves for the same differential equa-
tion can never cross (this essentially tells us that an initial-value problem cannot
have multiple solutions). Thus, for example, if we find a solution to the differential
equation (1.12.1) of the form y(x) = yg, for some constant yq (recall that such a
solution is called an equilibrium solution), then all other solution curves to the
differential equation must lie entirely above the line y = yg or entirely below it.

2. Numerically: Suppose we wish to approximate the solution to the initial-value
problem (1.12.2) at the point x = x| = xo + &, where & is small. Euler’s method
uses the slope of the solution at (xg, yo), which is f (xo, yo), to use a tangent line
approximation to the solution:

y(x) = yo + f(xo0, yo) (x — xp).
Therefore, we approximate
y(x1) = yo + f(x0, yo)(x1 — x0) = yo + hf (x0, yo).

Now, starting from the point (x1, y(x1)), we can repeat the process to find ap-
proximations to the solutions at other points x7, x3, . . .. The conclusion is that the
approximation to the solution to the initial-value problem (1.12.2) at the points
Xpy1 =x0+nh(n=0,1,...)1s

Ynt1 =Yn +hf(xXn,yn), n=0,1,...

In Section 1.10, other modifications to Euler’s method are also discussed.
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106 CHAPTER 1 First-Order Differential Equations

3. Analytically: In some situations, we can explicitly obtain an equation for the gen-
eral solution to the differential equation (1.12.1). These include situations in which
the differential equation is separable, first-order linear, first-order homogeneous,
Bernoulli, and/or exact. Table 1.12.1 shows the types of differential equations we
can solve analytically and summarizes the solution techniques. If a given differ-
ential equation cannot be written in one of these forms, then the next step is to try
to determine an integrating factor. If that fails, then we might try to find a change
of variables that would reduce the differential equation to one of the above types.

Type Standard Form Technique
Separable p(y)Y =q(x) Separate the variables and integrate.
First-order linear Y 4+ p(x)y =q(x) Rewrite as ﬂ% (I-y)=1-qg(x), where
I = e/P™dx and integrate with respect to x.
First-order y' = f(x,y) where Change variables: y = xV (x), and reduce to a
homogeneous flx,ty) = f(x,y) separable equation.
Bernoulli Y+ px)y = qg(x)y" Divide by y" and make the change of variables
u = y'=". This reduces the differential equation to
a linear equation.
Exact M dx + Ndy = 0, with The solution is ¢ (x, y) = ¢, where ¢ is determined
My, = N, by integrating ¢, = M, ¢y, = N.

Table 1.12.1: A summary of the basic solution techniques for y/ = f(x, y).

Example 1.12.1

Determine which of the above types, if any, the following differential equation falls into:

dy (8 +3yh

dx 4xy3

Solution: Since the given differential equation is written in the form dy/dx =
f(x,y), we first check whether it is separable or homogeneous. By inspection, we
see that it is neither of these. We next check to see whether it is a linear or a Bernoulli
equation. We therefore rewrite the equation in the equivalent form

dy 3 4.3

— 4+ —y=-2x , 1.12.3

dx  4x Y Y ( )
which we recognize as a Bernoulli equation with n = —3. We could therefore solve the

equation using the appropriate technique. Owing to the y~> term in Equation (1.12.3),
it follows that the equation is not a linear equation. Finally, we check for exactness. The
natural differential form to try for the given differential equation is

(8x7 +3yY) dx + 4xy>dy = 0. (1.12.4)
In this form, we have

My =12y, N.=4y’,
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so that the equation is not exact. However, we see that

(My — Ny)/N =2x"",

so that according to Theorem 1.9.11, I (x) = x? is an integrating factor. Therefore, we

could multiply Equation (1.12.4) by x? and then solve it as an exact equation. (]

Examples of First-Order Differential Equations

There are numerous real-world examples of first-order differential equations. Among the
applications discussed in this chapter are Newton’s law of cooling, families of orthog-
onal trajectories, Malthusian and logistic population models, mixing problems, electric

circuits, and others.

Additional Problems

1

. A racquetball player standing at the back wall of the
court hits the ball from a height of 2 feet horizontally
toward the front wall at 80 miles per hour. The length
of a regulation racquetball court is 40 feet. Does the
ball reach the front wall before hitting the ground?
Neglect air resistance, and assume the acceleration of
gravity is 32 feet/sec?.

. A boy 2 meters tall shoots a toy rocket straight up
from head level at 10 meters per second. Assume the
acceleration of gravity is 9.8 meters/sec?.

(a) What is the highest point above the ground
reached by the rocket?

(b) When does the rocket hit the ground?

In Problems 3-6, find the equation of the orthogonal trajec-
tories to the given family of curves.

3
4
5

6.

7

.y =cx.

.y =cx?,

.y =In (cx).

x* 4+ y4 =c.

. Consider the family of curves

x? +3y% = 2¢y, (1.12.5)

(a) Show that the differential equation of this family

is
dy  2xy

dx — x2—3y2"

(b) Determine the orthogonal trajectories to the fam-
ily (1.12.5).

In Problems 8-9, sketch the slope field and some represen-
tative solution curves for the given differential equation.

8. y/ =sinux.
9. y = y/x%
10. At time ¢ the velocity, v(¢), of an object is governed

11.

by the differential equation

dv 1
& Z@25-v), >0
dt 2

(a) Verify that v(¢) = 25 is a solution to this differ-
ential equation.

(b) Sketch the slope field for 0 < v < 25. What
happens to v(f) as t — 00?

An object of mass m is released from rest in a medium
in which the frictional forces are proportional to the
square of the velocity. The initial-value problem that
governs the subsequent motion is

d
mv— =mg — kv?, v(0) =0, (1.12.6)

dy
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108 CHAPTER1 First-Order Differential Equations

where v(¢) denotes the velocity of the object at time
t, y(t) denotes the distance traveled by the object at
time ¢ as measured from the point at which the object
was released, and k is a positive constant.

(a) Solve (1.12.6) and show that

VT =

2 %(1 — g~ 2ky/my.

(b) Make a sketch of v as a function of y.

In Problems 12-37, determine which of the five types of dif-
ferential equations we have studied the given equation falls
into (see Table 1.12.1), and use an appropriate technique to
find the general solution.

1, 4y _2Inx

Tdx  xy
13. xy’ —2y = 2x2Inx.
dy 2xy

14. =— .
dx x2 42y

15. (? +3xy +x2) dx —x>dy =0.
16. y’' + y(tanx + ysinx) = 0.
dy 2¢%* 1

E—i_ 1+ez"y:ezx—1'

18. v —xly =x71/x2 —y2.
dy siny+ycosx+1
dx  1—xcosy—sinx’

17.

19.

dy 1 25x% Inx
— 4 —-y=———.
2y

20.
dx x

21. eV dy — ¥V dx = 0.
22. y' + ycotx = secx.

X

dy 2e
- =2 -,
dx+1+exy Ve

24. y[ln (y/x) + 1ldx — xdy = 0.

23.

25. (14+2xe”)dx — (e +x)dy =0.
26. y' + ysinx = sinx.

27. 3y2 4+ x%) dx —2xydy =0.

28. 2x(Inx)y’ —y = —9x3y3Inx.
29. (1+x)y = y(2 +x).

30. x2—1(y —1)+2y=0.
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31. xsec?(xy) dy = — [y sec?(xy) + 2x] dx.

dy 5

32, — — =./y.
TN Y=EY
dy x2 y

33. + =

dx  x2—y2  x’
34. [In (xy) + 1] dx + ()—C +2y) dy = 0.
y

35 y,+X=251nx
X

2x3y
36. (x +xy?)y = x3ye*Y.
37. yy =cosx(yescx — 1), 0 <x < %

For Problems 38—41, determine which of the five types of
differential equations we have studied the given differential
equation falls into, and use an appropriate technique to find
the solution to the initial-value problem.

38. y —x2y =x2, y(0) =5.
39. e W dx + P dy =0, y(0)=0.

40. (3x2 +2xy?) dx + 2x%y)dy =0, y(1) =3.
d , 1

41, 2 (sinx)y = e, y(0) = -
dx e

42. Determine all values of the constants m and n, if there
are any, for which the differential equation

X +y"dx —x"y3 dy=0
is each of the following:

(a) Exact.

(b) Separable.

(¢) Homogeneous.
(d) Linear.

(e) Bernoulli.

43. A man’s sandals are moved from poolside (80°F) to
a sauna (180°F) to warm and dry them. If they are
100°F after 3 minutes in the sauna, how much time is
required in the sauna to increase their temperature to
140°F, according to Newton’s law of cooling?

44. A hot plate (150°F) is placed on a countertop in a
room kept at 70°F. If the plate cools 25°F in the first
10 minutes, when does the plate reach 100°F, accord-
ing to Newton’s law of cooling?



45.

46.

47.

48.

A simple nonlinear law of cooling states that the rate
of change of temperature of an object is proportional
to the square of the temperature difference between
the object and its surrounding medium (you may as-
sume that the temperature of the surrounding medium
is constant). Set up and solve the initial-value problem
that governs this cooling process if the initial temper-
ature is Tp. What happens to the temperature of the
object as t — 0o0?

The temperature of an object at time ¢ is governed by
the linear differential equation
dT
dt

At t = 0, the temperature of the object is 0°F and is,
at that time, increasing at a rate of 5°F/min.

= —k(T — 5cos?2t).

(a) Determine the value of the constant k.

(b) Determine the temperature of the object at time
t.

(c) Describe the behavior of the temperature of the
object for large values of 7.

Each spring, sandhill cranes migrate through the Platte
River valley in central Nebraska. An estimated maxi-
mum of a half-million of these birds reach the region
by April 1 each year. If there are only 100,000 sandhill
cranes 15 days later and the sandhill cranes leave the
Platte River valley at a rate proportional to the number
of them still in the valley at the time,

(a) How many sandhill cranes remain in the valley
30 days after April 1?

(b) How many sandhill cranes remain in the valley
35 days after April 1?

(¢) How many days after April 1 will there be fewer
than 1000 sandhill cranes in the valley?

A city’s population in the year 2000 was 200,000, in
2003 it was 230,000, and in 2006 it was 250,000. Using
the logistic model of population, predict the popula-
tion in 2010 and 2020.

1.12 Chapter Review 109

49. Consider an RC circuit with R = 4 Q, C = %F,
and E(t) = 6cos2t V. If g(0) = 3 C, determine the
current in the circuit for ¢ > 0.

50. Consider an RL circuit with R = 3 2, L = 0.3 H, and
E() =10V.Ifi(0) = 3 A, determine the current in
the circuit for ¢ > 0.

51. A solution containing 3 g/L of a salt solution pours into
a tank, initially half full of water, at a rate of 6 L/min.
The well-stirred mixture flows out at a rate of 4 L/min.
If the tank holds 60 L, find the amount of salt (in grams)
in the tank when the solution overflows.

In Problems 52-53, use Euler’s method with the specified
step size to determine the solution to the given initial-value
problem at the specified point.

52. y = x> +2y% y(0)=-3, h=0.1, y().
3x

53. y/ == +2, y(I)=2, h=0.05, y(l.5).
y

In Problems 54-55, use the modified Euler method with the
specified step size to determine the solution to the given
initial-value problem at the specified point. In each case,
compare your answer to that determined by using Euler’s
method.

54. The initial-value problem in Problem 52.

55. The initial-value problem in Problem 53.
In Problems 56-57, use the fourth-order Runge-Kutta
method with the specified step size to determine the solu-
tion to the given initial-value problem at the specified point.
In each case, compare your answer to that determined by
using Euler’s method.

56. The initial-value problem in Problem 52.

57. The initial-value problem in Problem 53.

Project: A Cylindrical Tank Problem

Consider an open cylindrical tank of height /¢ meters and radius » meters that is filled
with water. A circular hole of radius / meters in the bottom of the tank allows the water
to flow out under the influence of gravity. According to Torricelli’s law, the water flows
out with the same speed that it would acquire in falling freely from the water level in the

tank to the hole.
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. Use Torricelli’s law to derive the following equation for the rate of change of

volume of water in the tank,

d—V = —a+/2gh

dt

where h(t) denotes the height of water in the tank at time ¢, a denotes the area of
the hole, and g denotes the acceleration due to gravity. [Hint: First show that an
object that is released from rest at a height /4 hits the ground with a speed /2gh.
Then consider the change in the volume of water in the tank in a time interval Az.]

. Show that the rate of change of volume of water in the tank is also given by

dv dh
= r2—

dt dt’

. Using the results from problems (1) and (2), determine the height of the water in

the tank at time ¢, and show that the tank will empty when ¢t = ¢, where

e =

7r? |2hg

a 8

. Suppose now that starting at # = 0 chemical is added to the water in the tank at a

rate of w grams/second. Derive the following differential equation governing the
amount of chemical, A(¢), in the tank at time ¢:

dA 2
dt t—t,

A=w, 0<t<t,. (1.12.7)

. Solve the differential equation (1.12.7). Determine the time when A(?) is a maxi-

mum.

. By making an appropriate change of variables in the differential equation (1.12.7),

derive a differential equation for the concentration c¢(¢) of chemical in the tank at
time ¢. Solve your differential equation and verify that you get the same expression
for c(¢) as you do by dividing the expression for A(¢) obtained in the previous
problem by V().

. Inthe particular case when hg =16 m,r =5m, [ =0.1 m, and w = 15 g/s, determine

t., and the time when the concentration of chemical in the tank reaches 1 g/L.
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