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10 CHAPTER 1 First-Order Differential Equations

1.2 Basic Ideas and Terminology

In the preceding section we have used some applied problems to illustrate how differential
equations arise. We now undertake to formalize mathematically several ideas introduced
through these examples. We begin with a very general definition of a differential equation.

DEFINITION 1.2.1

A differential equation is an equation involving one or more derivatives of an un-
known function.

Example 1.2.2 The following are all differential equations:

(a)
dy

dx
+ y = x2, (b)

d2y

dx2
= −k2y, (c)

d3y

dx3
+
(
d2y

dx2

)5

+ cos x = 0,

(d) sin

(
dy

dx

)
+ tan−1 y = 1, (e) φxx + φyy − φx = ex + x sin y.

The differential equations occurring in (a) through (d) are called ordinary differen-
tial equations, since the unknown function y(x) depends only on one variable, x. In (e),
the unknown function φ(x, y) depends on more than one variable; hence the equation
involves partial derivatives. Such a differential equation is called a partial differential
equation. In this text we consider only ordinary differential equations. �

We now introduce some more definitions and terminology.

DEFINITION 1.2.3

The order of the highest derivative occurring in a differential equation is called the
order of the differential equation.

In Example 1.2.2, (a) has order 1, (b) has order 2, (c) has order 3, and (d) has order 1.
If we look back at the examples from the previous section, we see that problems formu-
lated using Newton’s second law of motion will always be governed by a second-order
differential equation (for the position of the object). Indeed, second-order differential
equations play a very fundamental role in applied problems, although differential equa-
tions of other orders also arise. For example, the differential equation obtained from
Newton’s law of cooling is a first-order differential equation, as is the differential equa-
tion for determining the orthogonal trajectories to a given family of curves. As another
example, we note that under certain conditions, the deflection, y(x), of a horizontal beam
is governed by the fourth-order differential equation

d4y

dx4
= F(x)

for an appropriate function F(x).
Any differential equation of order n can be written in the form

G(x, y, y′, y′′, . . . , y(n)) = 0, (1.2.1)

where we have introduced the prime notation to denote derivatives, and y(n) denotes the
nth derivative of y with respect to x (not y to the power of n). Of particular interest to us
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1.2 Basic Ideas and Terminology 11

throughout the text will be linear differential equations. These arise as the special case of
Equation (1.2.1), when y, y′, . . . , y(n) occur to the first degree only, and not as products
or arguments of other functions. The general form for such a differential equation is
given in the next definition.

DEFINITION 1.2.4

A differential equation that can be written in the form

a0(x)y
(n) + a1(x)y

(n−1) + · · · + an(x)y = F(x),
where a0, a1, . . . , an and F are functions of x only, is called a linear differential
equation of order n. Such a differential equation is linear in y, y′, y′′, . . . , y(n).

A differential equation that does not satisfy this definition is called a nonlinear
differential equation.

Example 1.2.5 The equations

y′′ + x2y′ + (sin x)y = ex and xy′′′ + 4x2y′ − 2

1+ x2
y = 0

are linear differential equations of order 2 and order 3, respectively, whereas the differ-
ential equations

y′′ + x sin(y′)− xy = x2 and y′′ − x2y′ + y2 = 0

are nonlinear. In the first case the nonlinearity arises from the sin(y′) term, whereas in
the second, the nonlinearity is due to the y2 term. �

Example 1.2.6 The general forms for first- and second-order linear differential equations are

a0(x)
dy

dx
+ a1(x)y = F(x)

and

a0(x)
d2y

dx2
+ a1(x)

dy

dx
+ a2(x)y = F(x),

respectively. �
If we consider the examples from the previous section, we see that the differential

equation governing the simple harmonic oscillator is a second-order linear differential
equation. In this case the linearity was imposed in the modeling process when we assumed
that the restoring force was directly proportional to the displacement from equilibrium
(Hooke’s law). Not all springs satisfy this relationship. For example, Duffing’s equation

m
d2y

dx2
+ k1y + k2y

3 = 0

gives a mathematical model of a nonlinear spring–mass system. If k2 = 0, this reduces
to the simple harmonic oscillator equation. Newton’s law of cooling assumes a linear re-
lationship between the rate of change of the temperature of an object and the temperature
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12 CHAPTER 1 First-Order Differential Equations

difference between the object and that of the surrounding medium. Hence, the resulting
differential equation is linear. This can be seen explicitly by writing Equation (1.1.8) as

dT

dt
+ kT = kTm,

which is a first-order linear differential equation. Finally, the differential equation for
determining the orthogonal trajectories of a given family of curves will in general be
nonlinear, as seen in Example 1.1.1.

Solutions of Differential Equations
We now define precisely what is meant by a solution to a differential equation.

DEFINITION 1.2.7

A function y = f (x) that is (at least) n times differentiable on an interval I is called
a solution to the differential equation (1.2.1) on I if the substitution y = f (x), y′ =
f ′(x), . . . , y(n) = f (n)(x) reduces the differential equation (1.2.1) to an identity
valid for all x in I . In this case we say that y = f (x) satisfies the differential equation.

Example 1.2.8 Verify that for all constants c1 and c2, y(x) = c1 sin x + c2 cos x is a solution to the

linear differential equation y′′ + y = 0 for x in the interval (−∞,∞).
Solution: The function y(x) is certainly twice differentiable for all real x. Further-
more,

y′(x) = c1 cos x − c2 sin x

and

y′′(x) = −(c1 sin x + c2 cos x).

Consequently,

y′′ + y = −(c1 sin x + c2 cos x)+ c1 sin x + c2 cos x = 0,

so that y′′ + y = 0 for every x in (−∞,∞). It follows from the preceding definition
that the given function is a solution to the differential equation on (−∞,∞). �

In the preceding example, x could assume all real values. Often, however, the inde-
pendent variable will be restricted in some manner. For example, the differential equation

dy

dx
= 1

2
√
x
(y − 1)

is undefined when x ≤ 0, and so any solution would be defined only for x > 0. In fact
this linear differential equation has solution

y(x) = ce
√
x + 1, x > 0,
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1.2 Basic Ideas and Terminology 13

where c is a constant. (The reader can check this by plugging in to the given differential
equation, as was done in Example 1.2.8. In Section 1.4 we will introduce a technique that
will enable us to derive this solution.) We now distinguish two ways in which solutions
to a differential equation can be expressed. Often, as in Example 1.2.8, we will be able
to obtain a solution to a differential equation in the explicit form y = f (x), for some
function f . However, when dealing with nonlinear differential equations, we usually
have to be content with a solution written in implicit form

F(x, y) = 0,

where the function F defines the solution, y(x), implicitly as a function of x. This is
illustrated in Example 1.2.9.

Example 1.2.9 Verify that the relation x2 + y2 − 4 = 0 defines an implicit solution to the nonlinear
differential equation

dy

dx
= −x

y
.

Solution: We regard the given relation as defining y as a function of x. Differentiating
this relation with respect to x yields4

2x + 2y
dy

dx
= 0.

That is,

dy

dx
= −x

y
,

as required. In this example we can obtain y explicitly in terms of x, since x2+y2−4 = 0
implies that

y = ±
√

4− x2.

The implicit relation therefore contains the two explicit solutions

y(x) =
√

4− x2, y(x) = −
√

4− x2,

which correspond graphically to the two semi-circles sketched in Figure 1.2.1.

Both solutions are undefined 
when x � �2

y

x

y(x) � (4 � x2)1/2

y(x) � �(4 � x2)1/2

Figure 1.2.1: Two solutions to the differential equation y′ = −x/y.
4Note that we have used implicit differentiation in obtaining d(y2)/dx = 2y · (dy/dx).
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14 CHAPTER 1 First-Order Differential Equations

Since x = ±2 corresponds to y = 0 in both of these equations, whereas the
differential equation is defined only for y �= 0, we must omit x = ±2 from the domains
of the solutions. Consequently, both of the foregoing solutions to the differential equation
are valid for −2 < x < 2.

�
In the preceding example the solutions to the differential equation are more simply

expressed in implicit form, although, as we have shown, it is quite easy to obtain the
corresponding explicit solutions. In the following example the solution must be expressed
in implicit form, since it is impossible to solve the implicit relation (analytically) for y
as a function of x.

Example 1.2.10 Show that the relation sin(xy)+ y2 − x = 0 defines a solution to

dy

dx
= 1− y cos(xy)

x cos(xy)+ 2y
.

Solution: Differentiating the given relationship implicitly with respect to x yields

cos(xy)

(
y + x dy

dx

)
+ 2y

dy

dx
− 1 = 0.

That is,

dy

dx
[x cos(xy)+ 2y] = 1− y cos(xy),

which implies that

dy

dx
= 1− y cos(xy)

x cos(xy)+ 2y

as required. �
Now consider the simple differential equation

d2y

dx2
= 12x.

From elementary calculus we know that all functions whose second derivative is 12x can
be obtained by performing two integrations. Integrating the given differential equation
once yields

dy

dx
= 6x2 + c1,

where c1 is an arbitrary constant. Integrating again, we obtain

y(x) = 2x3 + c1x + c2, (1.2.2)

where c2 is another arbitrary constant. The point to notice about this solution is that
it contains two arbitrary constants. Further, by assigning appropriate values to these
constants, we can determine all solutions to the differential equation. We call (1.2.2)
the general solution to the differential equation. In this example the given differential
equation was of second-order, and the general solution contained two arbitrary constants,
which arose because two integrations were required to solve the differential equation.
In the case of an nth-order differential equation we might suspect that the most general
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1.2 Basic Ideas and Terminology 15

form of solution that can arise would contain n arbitrary constants. This is indeed the
case and motivates the following definition.

DEFINITION 1.2.11

A solution to an nth-order differential equation on an interval I is called the general
solution on I if it satisfies the following conditions:

1. The solution contains n constants c1, c2, . . . , cn.

2. All solutions to the differential equation can be obtained by assigning
appropriate values to the constants.

Remark Not all differential equations have a general solution. For example, consider

(y′)2 + (y − 1)2 = 0.

The only solution to this differential equation is y(x) = 1, and hence the differential
equation does not have a solution containing an arbitrary constant.

Example 1.2.12 Find the general solution to the differential equation y′′ = e−x .

Solution: Integrating the given differential equation with respect to x yields

y′ = −e−x + c1,

where c1 is an integration constant. Integrating this equation, we obtain

y(x) = e−x + c1x + c2 (1.2.3)

where c2 is another integration constant. Consequently, all solutions to y′′ = e−x are of
the form (1.2.3), and therefore, according to Definition 1.2.11, this is the general solution
to y′′ = e−x on any interval. �

As the preceding example illustrates, we can, in principle, always find the general
solution to a differential equation of the form

dny

dxn
= f (x) (1.2.4)

by performing n integrations. However, if the function on the right-hand side of the
differential equation is not a function of x only, this procedure cannot be used. Indeed,
one of the major aims of this text is to determine solution techniques for differential
equations that are more complicated than Equation (1.2.4). A solution to a differential
equation is called a particular solution if it does not contain any arbitrary constants not
present in the differential equation itself. One way in which particular solutions arise
is by our assigning specific values to the arbitrary constants occurring in the general
solution to a differential equation. For example, from (1.2.3),

y(x) = e−x + x
is a particular solution to the differential equation d2y/dx2 = e−x (the solution corre-
sponding to c1 = 1, c2 = 0).
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16 CHAPTER 1 First-Order Differential Equations

Initial-Value Problems
As discussed in the preceding section, the unique specification of an applied problem
requires more than just a differential equation. We must also give appropriate auxiliary
conditions that characterize the problem under investigation. Of particular interest to us
is the case of the initial-value problem defined for an nth-order differential equation as
follows.

DEFINITION 1.2.13

An nth-order differential equation together with n auxiliary conditions of the form

y(x0) = y0, y′(x0) = y1, . . . , y(n−1)(x0) = yn−1,

where y0, y1, . . . , yn−1 are constants, is called an initial-value problem.

Example 1.2.14 Solve the initial-value problem

y′′ = e−x, (1.2.5)

y(0) = 1, y′(0) = 4. (1.2.6)

Solution: From Example 1.2.12, the general solution to Equation (1.2.5) is

y(x) = e−x + c1x + c2. (1.2.7)

We now impose the auxiliary conditions (1.2.6). Setting x = 0 in (1.2.7), we see that

y(0) = 1 if and only if 1 = 1+ c2.

So c2 = 0. Using this value for c2 in (1.2.7) and differentiating the result yields

y′(x) = −e−x + c1.

Consequently
y′(0) = 4 if and only if 4 = −1+ c1,

and hence c1 = 5. Thus the given auxiliary conditions pick out the particular solution to
the differential equation (1.2.5) with c1 = 5 and c2 = 0, so that the initial-value problem
has the unique solution

y(x) = e−x + 5x.

�
Initial-value problems play a fundamental role in the theory and applications of

differential equations. In the previous example, the initial-value problem had a unique
solution. More generally, suppose we have a differential equation that can be written in
the normal form

y(n) = f (x, y, y′, . . . , y(n−1)).

According to Definition 1.2.13, the initial-value problem for such an nth-order dif-
ferential equation is the following:
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1.2 Basic Ideas and Terminology 17

Statement of the initial-value problem: Solve

y(n) = f (x, y, y′, . . . , y(n−1))

subject to
y(x0) = y0, y′(x0) = y1, . . . , y(n−1)(x0) = yn−1,

where y0, y1, . . . , yn−1 are constants.

It can be shown that this initial-value problem always has a unique solution, provided
that f and its partial derivatives with respect to y, y′, . . . , y(n−1) are continuous in an
appropriate region. This is a fundamental result in the theory of differential equations.
In Chapter 6 we will show how the following special case can be used to develop the
theory for linear differential equations.

Theorem 1.2.15 Let a1, a2, . . . , an, F be functions that are continuous on an interval I . Then, for any x0
in I , the initial-value problem

y(n) + a1(x)y
(n−1) + · · · + an−1(x)y

′ + an(x)y = F(x),
y(x0) = y0, y′(x0) = y1, . . . , y(n−1)(x0) = yn−1

has a unique solution on I .

The next example, which we will refer back to on many occasions throughout the
remainder of the text, illustrates the power of the preceding theorem.

Example 1.2.16 Prove that the general solution to the differential equation

y′′ + ω2y = 0, −∞ < x <∞ (1.2.8)

where ω is a nonzero constant, is

y(x) = c1 cosωx + c2 sinωx, (1.2.9)

where c1, c2 are arbitrary constants.

Solution: It is a routine computation to verify that y(x) = c1 cosωx + c2 sinωx is a
solution to the differential equation (1.2.8) on (−∞,∞). According to Definition 1.2.11
we must now establish that every solution to (1.2.8) is of the form (1.2.9). To that end,
suppose that y = f (x) is any solution to (1.2.8). Then according to the preceding
theorem, y = f (x) is the unique solution to the initial-value problem

y′′ + ω2y = 0, y(0) = f (0), y′(0) = f ′(0). (1.2.10)

However, consider the function

y(x) = f (0) cosωx + f
′(0)
ω

sinωx (1.2.11)

This is of the form y(x) = c1 cosωx + c2 sinωx, where c1 = f (0) and c2 = f ′(0)/ω,
and therefore solves the differential equation (1.2.8). Further, evaluating (1.2.11) at x = 0
yields

y(0) = f (0) and y′(0) = f ′(0).
Consequently, (1.2.11) solves the initial-value problem (1.2.10). But, by assumption,
y(x) = f (x) solves the same initial-value problem. Owing to the uniqueness of the
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18 CHAPTER 1 First-Order Differential Equations

solution to this initial-value problem, it follows that these two solutions must coincide.
Therefore,

f (x) = f (0) cosωx + f
′(0)
ω

sinωx = c1 cosωx + c2 sinωx.

Since f (x)was an arbitrary solution to the differential equation (1.2.8), we can conclude
that every solution to (1.2.8) is of the form

y(x) = c1 cosωx + c2 sinωx

and therefore this is the general solution on (−∞,∞). �

In the remainder of this chapter we will focus primarily on first-order differential
equations and some of their elementary applications. We will investigate such differential
equations qualitatively, analytically, and numerically.

Exercises for 1.2

Key Terms
Differential equation, Order of a differential equation, Linear
differential equation, Nonlinear differential equation, Gen-
eral solution to a differential equation, Particular solution to
a differential equation, Initial-value problem.

Skills

• Be able to determine the order of a differential equa-
tion.

• Be able to determine whether a given differential equa-
tion is linear or nonlinear.

• Be able to determine whether or not a given func-
tion y(x) is a particular solution to a given differential
equation.

• Be able to determine whether or not a given implicit
relation defines a particular solution to a given differ-
ential equation.

• Be able to find the general solution to differential equa-
tions of the form y(n) = f (x) via n integrations.

• Be able to use initial conditions to find the solution to
an initial-value problem.

True-False Review
For Questions 1–6, decide if the given statement is true or
false, and give a brief justification for your answer. If true,

you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. The order of a differential equation is the order of
the lowest derivative appearing in the differential
equation.

2. The general solution to a third-order differential equa-
tion must contain three constants.

3. An initial-value problem always has a unique solu-
tion if the functions and partial derivatives involved
are continuous.

4. The general solution to y′′ + y = 0 is y(x) =
c1 cos x + 5c2 cos x.

5. The general solution to y′′ + y = 0 is y(x) =
c1 cos x + 5c1 sin x.

6. The general solution to a differential equation of the
form y(n) = F(x) can be obtained by n consecutive
integrations of the function F(x).

Problems
For Problems 1–6, determine the order of the given differen-
tial equation and state whether it is linear or nonlinear.

1.
d2y

dx2
+ exy dy

dx
= x2.
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1.2 Basic Ideas and Terminology 19

2.
d3y

dx3
+ 4

d2y

dx2
+ sin x

dy

dx
= xy + tan x.

3. y′′ + 3x(y′)3 − y = 1+ 3x.

4. sin x · ey′′ + y′ − tan y = cos x.

5.
d4y

dx4
+ 3

d2y

dx2
= x.

6.
√
xy′′ + ln x

y′′′
= 3x3.

For Problems 7–18, verify that the given function is a solu-
tion to the given differential equation (c1 and c2 are arbitrary
constants), and state the maximum interval over which the
solution is valid.

7. y(x) = c1e
x cos 2x+c2e

x sin 2x, y′′−2y′+5y = 0.

8. y(x) = c1e
x + c2e

−2x, y′′ + y′ − 2y = 0.

9. y(x) = 1

x + 4
, y′ = −y2.

10. y(x) = c1x
1/2, y′ = y

2x
.

11. y(x) = e−x sin 2x, y′′ + 2y′ + 5y = 0.

12. y(x) = c1 cosh 3x + c2 sinh 3x, y′′ − 9y = 0.

13. y(x) = c1x
−3 + c2x

−1, x2y′′ + 5xy′ + 3y = 0.

14. y(x) = c1x
1/2 + 3x2, 2x2y′′ − xy′ + y = 9x2.

15. y(x) = c1x
2 + c2x

3 − x2 sin x,
x2y′′ − 4xy′ + 6y = x4 sin x.

16. y(x) = c1e
ax + c2e

bx, y′′ − (a + b)y′ + aby = 0,
where a and b are constants and a �= b.

17. y(x) = eax(c1+c2x), y′′ −2ay′ +a2y = 0, where
a is a constant.

18. y(x) = eax(c1 cos bx + c2 sin bx),
y′′ − 2ay′ + (a2 + b2)y = 0, where a and b are
constants.

For Problems 19–22, determine all values of the constant
r such that the given function solves the given differential
equation.

19. y(x) = erx, y′′ + 2y′ − 3y = 0.

20. y(x) = erx, y′′ − 8y′ + 16y = 0.

21. y(x) = xr , x2y′′ + xy′ − y = 0.

22. y(x) = xr , x2y′′ + 5xy′ + 4y = 0.

23. When N is a positive integer, the Legendre equation

(1− x2)y′′ − 2xy′ +N(N + 1)y = 0,

with −1 < x < 1, has a solution that is a polynomial
of degreeN . Show by substitution into the differential
equation that in the case N = 3 such a solution is

y(x) = 1

2
x(5x2 − 3).

24. Determine a solution to the differential equation

(1− x2)y′′ − xy′ + 4y = 0

of the form y(x) = a0 + a1x + a2x
2 satisfying the

normalization condition y(1) = 1.

For Problems 25–29, show that the given relation defines an
implicit solution to the given differential equation, where c
is an arbitrary constant.

25. x sin y − ex = c, y′ = ex − sin y

x cos y
.

26. xy2 + 2y − x = c, y′ = 1− y2

2(1+ xy) .

27. exy − x = c, y′ = 1− yexy
xexy

.

Determine the solution with y(1) = 0.

28. ey/x + xy2 − x = c, y′ = x2(1− y2)+ yey/x
x(ey/x + 2x2y)

.

29. x2y2 − sin x = c, y′ = cos x − 2xy2

2x2y
.

Determine the explicit solution that satisfies y(π) =
1/π .

For Problems 30–33, find the general solution to the given
differential equation and the maximum interval on which the
solution is valid.

30. y′ = sin x.

31. y′ = x−1/2.

32. y′′ = xex .

33. y′′ = xn, n an integer.

For Problems 34–38, solve the given initial-value problem.

34. y′ = ln x, y(1) = 2.
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20 CHAPTER 1 First-Order Differential Equations

35. y′′ = cos x, y(0) = 2, y′(0) = 1.

36. y′′′ = 6x, y(0) = 1, y′(0) = −1, y′′(0) = 4.

37. y′′ = xex, y(0) = 3, y′(0) = 4.

38. Prove that the general solution to y′′ − y = 0 on any
interval I is y(x) = c1e

x + c2e
−x .

A second-order differential equation together with two aux-
iliary conditions imposed at different values of the indepen-
dent variable is called a boundary-value problem. For Prob-
lems 39–40, solve the given boundary-value problem.

39. y′′ = e−x, y(0) = 1, y(1) = 0.

40. y′′ = −2(3+ 2 ln x), y(1) = y(e) = 0.

41. The differential equation y′′ + y = 0 has the general
solution y(x) = c1 cos x + c2 sin x.

(a) Show that the boundary-value problem y′′ + y =
0, y(0) = 0, y(π) = 1 has no solutions.

(b) Show that the boundary-value problem y′′ + y =
0, y(0) = 0, y(π) = 0, has an infinite number
of solutions.

For Problems 42–47, verify that the given function is a so-
lution to the given differential equation. In these problems,
c1 and c2 are arbitrary constants. Throughout the text, the
symbol � refers to exercises for which some form of tech-
nology, such as a graphing calculator or computer algebra
system (CAS), is recommended.

42. � y(x) = c1e
2x + c2e

−3x, y′′ + y′ − 6y = 0.

43. � y(x) = c1x
4+c2x

−2, x2y′′−xy′−8y = 0, x > 0.

44. � y(x) = c1x
2 + c2x

2 ln x + 1
6x

2(ln x)3,
x2y′′ − 3xy′ + 4y = x2 ln x, x > 0.

45. � y(x) = xa[c1 cos(b ln x)+ c2 sin(b ln x)],
x2y′′ + (1−2a)xy′ + (a2+b2)y = 0, x > 0,where
a and b are arbitrary constants.

46. � y(x) = c1e
x + c2e

−x(1+ 2x + 2x2),

xy′′ − 2y′ + (2− x)y = 0, x > 0.

47. � y(x) =
10∑
k=0

1

k!x
k, xy′′ − (x + 10)y′ + 10y = 0,

x > 0.

48. �
(a) Derive the polynomial of degree five that satisfies

both the Legendre equation

(1− x2)y′′ − 2xy′ + 30y = 0

and the normalization condition y(1) = 1.

(b) �Sketch your solution from (a) and determine ap-
proximations to all zeros and local maxima and
local minima on the interval (−1, 1).

49. �One solution to the Bessel equation of (nonnegative)
integer order N

x2y′′ + xy′ + (x2 −N2)y = 0

is

y(x) = JN(x) =
∞∑
k=0

(−1)k

k!(N + k)!
(x

2

)2k+N
.

(a) Write the first three terms of J0(x).

(b) Let J (0, x,m) denote the mth partial sum

J (0, x,m) =
m∑
k=0

(−1)k

(k!)2
(x

2

)2k
.

Plot J (0, x, 4) and use your plot to approximate
the first positive zero of J0(x). Compare your
value against a tabulated value or one generated
by a computer algebra system.

(c) Plot J0(x) and J (0, x, 4) on the same axes over
the interval [0, 2]. How well do they compare?

(d) If your system has built-in Bessel functions, plot
J0(x) and J (0, x,m) on the same axes over the
interval [0, 10] for various values of m. What is
the smallest value ofm that gives an accurate ap-
proximation to the first three positive zeros of
J0(x)?

1.3 The Geometry of First-Order DIfferential Equations

The primary aim of this chapter is to study the first-order differential equation

dy

dx
= f (x, y), (1.3.1)


