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20 CHAPTER 1 First-Order Differential Equations

35. y′′ = cos x, y(0) = 2, y′(0) = 1.

36. y′′′ = 6x, y(0) = 1, y′(0) = −1, y′′(0) = 4.

37. y′′ = xex, y(0) = 3, y′(0) = 4.

38. Prove that the general solution to y′′ − y = 0 on any
interval I is y(x) = c1e

x + c2e
−x .

A second-order differential equation together with two aux-
iliary conditions imposed at different values of the indepen-
dent variable is called a boundary-value problem. For Prob-
lems 39–40, solve the given boundary-value problem.

39. y′′ = e−x, y(0) = 1, y(1) = 0.

40. y′′ = −2(3+ 2 ln x), y(1) = y(e) = 0.

41. The differential equation y′′ + y = 0 has the general
solution y(x) = c1 cos x + c2 sin x.

(a) Show that the boundary-value problem y′′ + y =
0, y(0) = 0, y(π) = 1 has no solutions.

(b) Show that the boundary-value problem y′′ + y =
0, y(0) = 0, y(π) = 0, has an infinite number
of solutions.

For Problems 42–47, verify that the given function is a so-
lution to the given differential equation. In these problems,
c1 and c2 are arbitrary constants. Throughout the text, the
symbol � refers to exercises for which some form of tech-
nology, such as a graphing calculator or computer algebra
system (CAS), is recommended.

42. � y(x) = c1e
2x + c2e

−3x, y′′ + y′ − 6y = 0.

43. � y(x) = c1x
4+c2x

−2, x2y′′−xy′−8y = 0, x > 0.

44. � y(x) = c1x
2 + c2x

2 ln x + 1
6x

2(ln x)3,
x2y′′ − 3xy′ + 4y = x2 ln x, x > 0.

45. � y(x) = xa[c1 cos(b ln x)+ c2 sin(b ln x)],
x2y′′ + (1−2a)xy′ + (a2+b2)y = 0, x > 0,where
a and b are arbitrary constants.

46. � y(x) = c1e
x + c2e

−x(1+ 2x + 2x2),

xy′′ − 2y′ + (2− x)y = 0, x > 0.

47. � y(x) =
10∑
k=0

1

k!x
k, xy′′ − (x + 10)y′ + 10y = 0,

x > 0.

48. �
(a) Derive the polynomial of degree five that satisfies

both the Legendre equation

(1− x2)y′′ − 2xy′ + 30y = 0

and the normalization condition y(1) = 1.

(b) �Sketch your solution from (a) and determine ap-
proximations to all zeros and local maxima and
local minima on the interval (−1, 1).

49. �One solution to the Bessel equation of (nonnegative)
integer order N

x2y′′ + xy′ + (x2 −N2)y = 0

is

y(x) = JN(x) =
∞∑
k=0

(−1)k

k!(N + k)!
(x

2

)2k+N
.

(a) Write the first three terms of J0(x).

(b) Let J (0, x,m) denote the mth partial sum

J (0, x,m) =
m∑
k=0

(−1)k

(k!)2
(x

2

)2k
.

Plot J (0, x, 4) and use your plot to approximate
the first positive zero of J0(x). Compare your
value against a tabulated value or one generated
by a computer algebra system.

(c) Plot J0(x) and J (0, x, 4) on the same axes over
the interval [0, 2]. How well do they compare?

(d) If your system has built-in Bessel functions, plot
J0(x) and J (0, x,m) on the same axes over the
interval [0, 10] for various values of m. What is
the smallest value ofm that gives an accurate ap-
proximation to the first three positive zeros of
J0(x)?

1.3 The Geometry of First-Order DIfferential Equations

The primary aim of this chapter is to study the first-order differential equation

dy

dx
= f (x, y), (1.3.1)
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1.3 The Geometry of First-Order DIfferential Equations 21

where f (x, y) is a given function of x and y. In this section we focus our attention mainly
on the geometric aspects of the differential equation and its solutions. The graph of any
solution to the differential equation (1.3.1) is called a solution curve. If we recall the
geometric interpretation of the derivative dy/dx as giving the slope of the tangent line
at any point on the curve with equation y = y(x), we see that the function f (x, y) in
(1.3.1) gives the slope of the tangent line to the solution curve passing through the point
(x, y). Consequently, when we solve Equation (1.3.1), we are finding all curves whose
slope at the point (x, y) is given by the function f (x, y). According to our definition in
the previous section, the general solution to the differential equation (1.3.1) will involve
one arbitrary constant, and therefore, geometrically, the general solution gives a family
of solution curves in the xy-plane, one solution curve corresponding to each value of the
arbitrary constant.

Example 1.3.1 Find the general solution to the differential equation dy/dx = 2x, and sketch the corre-
sponding solution curves.

Solution: The differential equation can be integrated directly to obtain y(x) = x2+c.
Consequently the solution curves are a family of parabolas in the xy-plane. This is
illustrated in Figure 1.3.1. �

x

y

Figure 1.3.1: Some solution curves for the differential equation dy/dx = 2x.

Figure 1.3.2 gives a Mathematica plot of some solution curves to the differential
equation

dy

dx
= y − x2.

This illustrates that generally the solution curves of a differential equation are quite
complicated. Upon completion of the material in this section, the reader will be able to
obtain Figure 1.3.2 without needing a computer algebra system.

Existence and Uniqueness of Solutions
It is useful for the further analysis of the differential equation (1.3.1) to give at this point
a brief discussion of the existence and uniqueness of solutions to the corresponding
initial-value problem

dy

dx
= f (x, y), y(x0) = y0. (1.3.2)

Geometrically, we are interested in finding the particular solution curve to the differential
equation that passes through the point in the xy-plane with coordinates (x0, y0). The
following questions arise regarding the initial-value problem:
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22 CHAPTER 1 First-Order Differential Equations

y

x

(x0, y0)

y�(x0) � f(x0, y0) � y0 � x0
2

Figure 1.3.2: Some solution curves for the differential equation dy/dx = y − x2.

1. Existence: Does the initial-value problem have any solutions?

2. Uniqueness: If the answer to question 1 is yes, does the initial-value problem have
only one solution?

Certainly in the case of an applied problem we would be interested only in initial-value
problems that have precisely one solution. The following theorem establishes conditions
onf that guarantee the existence and uniqueness of a solution to the initial-value problem
(1.3.2).

Theorem 1.3.2 (Existence and Uniqueness Theorem)

Let f (x, y) be a function that is continuous on the rectangle

R = {(x, y) : a ≤ x ≤ b, c ≤ y ≤ d}.
Suppose further that ∂f/∂y is continuous inR. Then for any interior point (x0, y0) in the
rectangle R, there exists an interval I containing x0 such that the initial-value problem
(1.3.2) has a unique solution for x in I .

Proof A complete proof of this theorem can be found, for example, in G. F. Simmons,
Differential Equations (New York: McGraw-Hill, 1972). Figure 1.3.3 gives a geometric
illustration of the result.

Remark From a geometric viewpoint, if f (x, y) satisfies the hypotheses of the exis-
tence and uniqueness theorem in a region R of the xy-plane, then throughout that region
the solution curves of the differential equation dy/dx = f (x, y) cannot intersect. For if
two solution curves did intersect at (x0, y0) in R, then that would imply there was more
than one solution to the initial-value problem

dy

dx
= f (x, y), y(x0) = y0,

which would contradict the existence and uniqueness theorem.
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c

a b

d

I

y

x

Unique solution on I

Rectangle, R(x0, y0)

Figure 1.3.3: Illustration of the existence and uniqueness theorem for first-order differential
equations.

The following example illustrates how the preceding theorem can be used to establish
the existence of a unique solution to a differential equation, even though at present we
do not know how to determine the solution.

Example 1.3.3 Prove that the initial-value problem

dy

dx
= 3xy1/3, y(0) = a

has a unique solution whenever a �= 0.

Solution: In this case the initial point is x0 = 0, y0 = a, and f (x, y) = 3xy1/3.
Hence, ∂f/∂y = xy−2/3. Consequently, f is continuous at all points in the xy-plane,
whereas ∂f/∂y is continuous at all points not lying on the x-axis (y �= 0). Provided
a �= 0, we can certainly draw a rectangle containing (0, a) that does not intersect the
x-axis. (See Figure 1.3.4.) In any such rectangle the hypotheses of the existence and
uniqueness theorem are satisfied, and therefore the initial-value problem does indeed
have a unique solution. �

y

x

(0, a)

Figure 1.3.4: The initial-value problem in Example 1.3.3 satisfies the hypotheses of the
existence and uniqueness theorem in the small rectangle, but not in the large rectangle.

Example 1.3.4 Discuss the existence and uniqueness of solutions to the initial-value problem

dy

dx
= 3xy1/3, y(0) = 0.
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24 CHAPTER 1 First-Order Differential Equations

Solution: The differential equation is the same as in the previous example, but the
initial condition is imposed on the x-axis. Since ∂f/∂y = xy−2/3 is not continuous
along the x-axis, there is no rectangle containing (0, 0) in which the hypotheses of the
existence and uniqueness theorem are satisfied. We can therefore draw no conclusion
from the theorem itself. We leave it as an exercise to verify by direct substitution that the
given initial-value problem does in fact have the following two solutions:

y(x) = 0 and y(x) = x3.

Consequently in this case the initial-value problem does not have a unique solution. �

Slope Fields

We now return to our discussion of the geometry of solutions to the differential equation

dy

dx
= f (x, y).

The fact that the function f (x, y) gives the slope of the tangent line to the solution
curves of this differential equation leads to a simple and important idea for determining
the overall shape of the solution curves. We compute the value of f (x, y) at several
points and draw through each of the corresponding points in the xy-plane small line
segments having f (x, y) as their slopes. The resulting sketch is called the slope field
for the differential equation. The key point is that each solution curve must be tangent to
the line segments that we have drawn, and therefore by studying the slope field we can
obtain the general shape of the solution curves.

Example 1.3.5 Sketch the slope field for the differential equation dy/dx = 2x2.

Solution: The slope of the solution curves to the differential equation at each point in
the xy-plane depends on x only. Consequently, the slopes of the solution curves will be
the same at every point on any line parallel to the y-axis (on such a line, x is constant).
Table 1.3.1 contains the values of the slope of the solution curves at various points in the
interval [−1, 1].

x Slope = 2x2

0 0
±0.2 0.08
±0.4 0.32
±0.6 0.72
±0.8 1.28
±1.0 2

Table 1.3.1: Values of the slope
for the differential equation in
Example 1.3.5.

Using this information, we obtain the slope field shown in Figure 1.3.5. In this
example, we can integrate the differential equation to obtain the general solution

y(x) = 2

3
x3 + c.

Some solution curves and their relation to the slope field are also shown in Figure 1.3.5.
�

In the preceding example, the slope field could be obtained fairly easily because the
slopes of the solution curves to the differential equation were constant on lines parallel
to the y-axis. For more complicated differential equations, further analysis is generally
required if we wish to obtain an accurate plot of the slope field and the behavior of the
corresponding solution curves. Below we have listed three useful procedures.
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y

x

Figure 1.3.5: Slope field and some representative solution curves for the differential equation
dy/dx = 2x2.

1. Isoclines: For the differential equation

dy

dx
= f (x, y), (1.3.3)

the function f (x, y) determines the regions in the xy-plane where the slope of the
solution curves is positive, as well as those where it is negative. Furthermore, each
solution curve will have the same slope k along the family of curves

f (x, y) = k.
These curves are called the isoclines of the differential equation, and they can be
very useful in determining slope fields. When sketching a slope field, we often
start by drawing several isoclines and the corresponding line segments with slope
k at various points along them.

2. Equilibrium Solutions: Any solution to the differential equation (1.3.3) of the
form y(x) = y0, where y0 is a constant, is called an equilibrium solution to the
differential equation. The corresponding solution curve is a line parallel to the x-
axis. From Equation (1.3.3), equilibrium solutions are given by any constant values
of y for which f (x, y) = 0, and therefore can often be obtained by inspection.
For example, the differential equation

dy

dx
= (y − x)(y + 1)

has the equilibrium solution y(x) = −1. One reason that equilibrium solutions are
useful in sketching slope fields and determining the general behavior of the full
family of solution curves is that, from the existence and uniqueness theorem, we
know that no other solution curves can intersect the solution curve corresponding
to an equilibrium solution. Consequently, equilibrium solutions serve to divide the
xy-plane into different regions.

3. Concavity Changes: By differentiating Equation (1.3.3) (implicitly) with respect
to x we can obtain an expression for d2y/dx2 in terms of x and y. This can be
useful in determining the behavior of the concavity of the solution curves to the
differential equation (1.3.3). The remaining examples illustrate the application of
the foregoing procedures.

Example 1.3.6 Sketch the slope field for the differential equation

dy

dx
= y − x. (1.3.4)
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26 CHAPTER 1 First-Order Differential Equations

Solution: By inspection we see that the differential equation has no equilibrium
solutions. The isoclines of the differential equation are the family of straight lines y−x =
k. Thus each solution curve of the differential equation has slope k at all points along
the line y − x = k. Table 1.3.2 contains several values for the slopes of the solution
curves, and the equations of the corresponding isoclines. We note that the slope at all
points along the isocline y = x + 1 is unity, which, from Table 1.3.2, coincides with
the slope of any solution curve that meets it. This implies that the isocline must in fact
coincide with a solution curve. Hence, one solution to the differential equation (1.3.4)
is y(x) = x + 1, and, by the existence and uniqueness theorem, no other solution curve
can intersect this one.

Slope of Equation of
Solution Curves Isocline

k = −2 y = x − 2
k = −1 y = x − 1
k = 0 y = x
k = 1 y = x + 1
k = 2 y = x + 2

Table 1.3.2: Slope and isocline information for the differential equation in Example 1.3.6.

In order to determine the behavior of the concavity of the solution curves, we dif-
ferentiate the given differential equation implicitly with respect to x to obtain

d2y

dx2
= dy

dx
− 1 = y − x − 1,

where we have used (1.3.4) to substitute for dy/dx in the second step. We see that the
solution curves are concave up (y′′ > 0) at all points above the line

y = x + 1 (1.3.5)

and concave down (y′′ < 0) at all points beneath this line. We also note that Equa-
tion (1.3.5) coincides with the particular solution already identified. Putting all of this
information together, we obtain the slope field sketched in Figure 1.3.6.

y

x

y � x � 1

Isoclines

Figure 1.3.6: Hand-drawn slope field, isoclines, and some approximate solution curves for the
differential equation in Example 1.3.6.

�
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Generating Slope Fields Using Technology
Many computer algebra systems (CAS) and graphing calculators have built-in programs
to generate slope fields. As an example, in the CAS Maple the command

diffeq := diff(y(x), x) = y(x)− x;
assigns the name diffeq to the differential equation considered in the previous example.
The further command

DEplot(diffeq, y(x), x = −3..3, y = −3..3, arrows=line);
then produces a sketch of the slope field for the differential equation on the square
−3 ≤ x ≤ 3,−3 ≤ y ≤ 3. Initial conditions such as y(0) = 0, y(0) = 1, y(0) =
2, y(0) = −1 can be specified using the command

IC := {[0, 0], [0, 1], [0, 2], [0,−1]};
Then the command

DEplot(diffeq, y(x), x = −3..3, IC, y = −3..3, arrows=line);
not only plots the slope field, but also gives a numerical approximation to each of the
solution curves satisfying the specified initial conditions. Some of the methods that can
be used to generate such numerical approximations will be discussed in Section 1.10.
The preceding sequence of Maple commands was used to generate the Maple plot given
in Figure 1.3.7. Clearly the generation of slope fields and approximate solution curves
is one area where technology can be extremely helpful.

1

1 2 3

2

�1

�1

3

y

x
�2�3

�2

�3

Figure 1.3.7: Maple plot of the slope field and some approximate solution curves for the
differential equation in Example 1.3.6.

Example 1.3.7 Sketch the slope field and some approximate solution curves for the differential equation

dy

dx
= y(2− y). (1.3.6)
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Solution: We first note that the given differential equation has the two equilibrium
solutions

y(x) = 0 and y(x) = 2.

Consequently, from Theorem 1.3.2, the xy-plane can be divided into the three distinct
regions y < 0, 0 < y < 2, and y > 2. From Equation (1.3.6) the behavior of the sign
of the slope of the solution curves in each of these regions is given in the following
schematic.

sign of slope: −−−− |+ +++ |− −−−
y-interval: 0 2

The isoclines are determined from

y(2− y) = k.
That is,

y2 − 2y + k = 0,

so that the solution curves have slope k at all points of intersection with the horizontal
lines

y = 1±√1− k. (1.3.7)

Table 1.3.3 contains some of the isocline equations. Note from Equation (1.3.7) that
the largest possible positive slope is k = 1. We see that the slopes of the solution
curves quickly become very large and negative for y outside the interval [0, 2]. Finally,
differentiating Equation (1.3.6) implicitly with respect to x yields

d2y

dx2
= 2

dy

dx
− 2y

dy

dx
= 2(1− y)dy

dx
= 2y(1− y)(2− y).

Slope Equation
of Solution Curves of Isocline

k = 1 y = 1
k = 0 y = 2 and y = 0
k = −1 y = 1±√2
k = −2 y = 1±√3
k = −3 y = 3 and y = −1
k = −n, n ≥ 1 y = 1±√n+ 1

Table 1.3.3: Slope and isocline information for the differential equation in Example 1.3.7.

The sign of d2y/dx2 is given in the following schematic.

sign of y′′: −−−− |+ +++ |− −−− |+ + + +
y-interval: 0 1 2
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2

y

x

Figure 1.3.8: Hand-drawn slope field, isoclines, and some solution curves for the differential
equation dy/dx = y(2− y).

Using this information leads to the slope field sketched in Figure 1.3.8. We have also
included some approximate solution curves. We see from the slope field that for any
initial condition y(x0) = y0, with 0 ≤ y0 ≤ 2, the corresponding unique solution to
the differential equation will be bounded. In contrast, if y0 > 2, the slope field suggests
that all corresponding solutions approach y = 2 as x →∞, whereas if y0 < 0, then all
corresponding solutions approach y = 0 as x →−∞. Furthermore, the behavior of the
slope field also suggests that the solution curves that do not lie in the region 0 < y < 2
may diverge at finite values of x. We leave it as an exercise to verify (by substitution into
Equation (1.3.6)) that for all values of the constant c,

y(x) = 2ce2x

ce2x − 1

is a solution to the given differential equation. We see that any initial condition that
yields a positive value for c will indeed lead to a solution that has a vertical asymptote
at x = 1

2 ln(1/c). �
The tools that we have introduced in this section enable us to analyze the solution

behavior of many first-order differential equations. However, for complicated functions
f (x, y) in Equation (1.3.3), performing these computations by hand can be a tedious
task. Fortunately, as we have illustrated, there are many computer programs available for
drawing slope fields and generating solution curves (numerically). Furthermore, several
graphing calculators also have these capabilities.

Exercises for 1.3

Key Terms
Solution curve, Existence and uniqueness theorem, Slope
field, Isocline, Equilibrium solution.

Skills

• Be able to find isoclines for a differential equation
dy/dx = f (x, y).
• Be able to determine equilibrium solutions for a dif-

ferential equation dy/dx = f (x, y).

• Be able to sketch the slope field for a differential equa-
tion, using isoclines, equilibrium solutions, and con-
cavity changes.

• Be able to sketch solution curves to a differential
equation.

• Be able to apply the existence and uniqueness theorem
to find unique solutions to initial-value problems.
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True-False Review
For Questions 1–7, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. If f (x, y) satisfies the hypotheses of the existence
and uniqueness theorem in a region R of the xy-
plane, then the solution curves to a differential equa-
tion dy/dx = f (x, y) cannot intersect in R.

2. Every differential equation dy/dx = f (x, y) has at
least one equilibrium solution.

3. The differential equation dy/dx = x(y2 − 4) has no
equilibrium solutions.

4. The circle x2+y2 = 4 is an isocline for the differential
equation dy/dx = x2 + y2.

5. The equilibrium solutions of a differential equation are
always parallel to one another.

6. The isoclines for the differential equation

dy

dx
= x2 + y2

2y

are the family of circles x2 + (y − k)2 = k2.

7. No solution to the differential equation dy/dx =
f (x, y) can intersect with equilibrium solutions of the
differential equation.

Problems
For Problems 1–7, determine the differential equation giving
the slope of the tangent line at the point (x, y) for the given
family of curves.

1. y = c/x.

2. y = cx2.

3. x2 + y2 = 2cx.

4. y2 = cx.

5. 2cy = x2 − c2.

6. y2 − x2 = c.
7. (x − c)2 + (y − c)2 = 2c2.

For Problems 8–11, verify that the given function (or rela-
tion) defines a solution to the given differential equation and
sketch some of the solution curves. If an initial condition is
given, label the solution curve corresponding to the resulting
unique solution. (In these problems, c denotes an arbitrary
constant.)

8. x2 + y2 = c, y′ = −x/y.

9. y = cx3, y′ = 3y/x, y(2) = 8.

10. y2 = cx, 2x dy − y dx = 0, y(1) = 2.

11. (x − c)2 + y2 = c2, y′ = y2 − x2

2xy
, y(2) = 2.

12. Prove that the initial-value problem

y′ = x sin(x + y), y(0) = 1

has a unique solution.

13. Use the existence and uniqueness theorem to prove
that y(x) = 3 is the only solution to the initial-value
problem

y′ = x

x2 + 1
(y2 − 9), y(0) = 3.

14. Do you think that the initial-value problem

y′ = xy1/2, y(0) = 0

has a unique solution? Justify your answer.

15. Even simple-looking differential equations can have
complicated solution curves. In this problem, we study
the solution curves of the differential equation

y′ = −2xy2. (1.3.8)

(a) Verify that the hypotheses of the existence and
uniqueness theorem (Theorem 1.3.2) are satisfied
for the initial-value problem

y′ = −2xy2, y(x0) = y0

for every (x0, y0). This establishes that the initial-
value problem always has a unique solution on
some interval containing x0.

(b) Verify that for all values of the constant c, y(x) =
1/(x2 + c) is a solution to (1.3.8).
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(c) Use the solution to (1.3.8) given in (b) to solve the
following initial-value problems. For each case,
sketch the corresponding solution curve, and state
the maximum interval on which your solution is
valid.

(i) y′ = −2xy2, y(0) = 1.
(ii) y′ = −2xy2, y(1) = 1.

(iii) y′ = −2xy2, y(0) = −1.

(d) What is the unique solution to the following
initial-value problem?

y′ = −2xy2, y(0) = 0.

16. Consider the initial-value problem:

y′ = y(y − 1), y(x0) = y0.

(a) Verify that the hypotheses of the existence and
uniqueness theorem are satisfied for this initial-
value problem for any x0, y0. This establishes that
the initial-value problem always has a unique so-
lution on some interval containing x0.

(b) By inspection, determine all equilibrium solu-
tions to the differential equation.

(c) Determine the regions in the xy-plane where the
solution curves are concave up, and determine
those regions where they are concave down.

(d) Sketch the slope field for the differential equa-
tion, and determine all values of y0 for which
the initial-value problem has bounded solutions.
On your slope field, sketch representative solution
curves in the three cases y0 < 0, 0 < y0 < 1, and
y0 > 1.

For Problems 17–24, sketch the slope field and some repre-
sentative solution curves for the given differential equation.

17. y′ = 4x.

18. y′ = 1/x.

19. y′ = x + y.

20. y′ = x/y.

21. y′ = −4x/y.

22. y′ = x2y.

23. y′ = x2 cos y.

24. y′ = x2 + y2.

25. According to Newton’s law of cooling (see Sec-
tion 1.1), the temperature of an object at time t is
governed by the differential equation

dT

dt
= −k(T − Tm),

where Tm is the temperature of the surrounding
medium, and k is a constant. Consider the case when
Tm = 70 and k = 1/80. Sketch the corresponding
slope field and some representative solution curves.
What happens to the temperature of the object as
t → ∞? Note that this result is independent of the
initial temperature of the object.

For Problems 26–31, determine the slope field and some rep-
resentative solution curves for the given differential equation.

26. � y′ = −2xy.

27. � y′ = x sin x

1+ y2
.

28. � y′ = 3x − y.

29. � y′ = 2x2 sin y.

30. � y′ = 2+ y2

3+ 0.5x2
.

31. � y′ = 1− y2

2+ 0.5x2
.

32. �
(a) Determine the slope field for the differential

equation

y′ = x−1(3 sin x − y)
on the interval (0, 10].

(b) Plot the solution curves corresponding to each of
the following initial conditions:

y(0.5) = 0, y(1) = −1,

y(1) = 2, y(3) = 0.

What do you conclude about the behavior as
x → 0+ of solutions to the differential equation?
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(c) Plot the solution curve corresponding to the ini-
tial condition y(π/2) = 6/π . How does this fit
in with your answer to part (b)?

(d) Describe the behavior of the solution curves for
large positive x.

33. � Consider the family of curves y = kx2, where k is
a constant.

(a) Show that the differential equation of the family
of orthogonal trajectories is

dy

dx
= − x

2y
.

(b) On the same axes sketch the slope field for the
preceding differential equation and several mem-

bers of the given family of curves. Describe the
family of orthogonal trajectories.

34. � Consider the differential equation

di

dt
+ ai = b,

where a and b are constants. By drawing the slope
fields corresponding to various values of a and b, for-
mulate a conjecture regarding the value of

lim
t→∞ i(t).

1.4 Separable Differential Equations

In the previous section we analyzed first-order differential equations using qualitative
techniques. We now begin an analytical study of these differential equations by devel-
oping some solution techniques that enable us to determine the exact solution to certain
types of differential equations. The simplest differential equations for which a solution
technique can be obtained are the so-called separable equations, which are defined as
follows:

DEFINITION 1.4.1

A first-order differential equation is called separable if it can be written in the form

p(y)
dy

dx
= q(x). (1.4.1)

The solution technique for a separable differential equation is given in Theorem 1.4.2.

Theorem 1.4.2 If p(y) and q(x) are continuous, then Equation (1.4.1) has the general solution∫
p(y) dy =

∫
q(x) dx + c, (1.4.2)

where c is an arbitrary constant.

Proof We use the chain rule for derivatives to rewrite Equation (1.4.1) in the equivalent
form

d

dx

(∫
p(y) dy

)
= q(x).

Integrating both sides of this equation with respect to x yields Equation (1.4.2).


