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23. The pressure p, and density, ρ, of the atmosphere at a
height y above the earth’s surface are related by

dp = −gρ dy.
Assuming that p and ρ satisfy the adiabatic equation

of state p = p0

(
ρ

ρ0

)γ
, where γ �= 1 is a constant

and p0 and ρ0 denote the pressure and density at the
earth’s surface, respectively, show that

p = p0

[
1− (γ − 1)

γ
· ρ0gy

p0

]γ /(γ−1)

.

24. An object whose temperature is 615◦F is placed in a
room whose temperature is 75◦F. At 4 p.m. the temper-
ature of the object is 135◦F, and an hour later its tem-
perature is 95◦F. At what time was the object placed
in the room?

25. A flammable substance whose initial temperature is
50◦F is inadvertently placed in a hot oven whose tem-
perature is 450◦F. After 20 minutes, the substance’s
temperature is 150◦F. Find the temperature of the sub-
stance after 40 minutes. Assuming that the substance
ignites when its temperature reaches 350◦F, find the
time of combustion.

26. At 2 p.m. on a cool (34◦F) afternoon in March, Sher-
lock Holmes measured the temperature of a dead body
to be 38◦F. One hour later, the temperature was 36◦F.
After a quick calculation using Newton’s law of cool-
ing, and taking the normal temperature of a living body
to be 98◦F, Holmes concluded that the time of death
was 10 a.m. Was Holmes right?

27. At 4 p.m., a hot coal was pulled out of a furnace and
allowed to cool at room temperature (75◦F). If, after
10 minutes, the temperature of the coal was 415◦F, and
after 20 minutes, its temperature was 347◦F, find the
following:

(a) The temperature of the furnace.

(b) The time when the temperature of the coal was
100◦F.

28. A hot object is placed in a room whose temperature is
72◦F. After one minute the temperature of the object
is 150◦F and its rate of change of temperature is 20◦F
per minute. Find the initial temperature of the object
and the rate at which its temperature is changing after
10 minutes.

1.5 Some Simple Population Models

In this section we consider two important models of population growth whose mathe-
matical formulation leads to separable differential equations.

Malthusian Growth
The simplest mathematical model of population growth is obtained by assuming that the
rate of increase of the population at any time is proportional to the size of the population
at that time. If we let P(t) denote the population at time t , then

dP

dt
= kP,

where k is a positive constant. Separating the variables and integrating yields

P(t) = P0e
kt , (1.5.1)

where P0 denotes the population at t = 0. This law predicts an exponential increase in
the population with time, which gives a reasonably accurate description of the growth
of certain algae, bacteria, and cell cultures. It is called the Malthusian growth model.
The time taken for such a culture to double in size is called the doubling time. This is
the time, td , when P(td) = 2P0. Substituting into (1.5.1) yields

2P0 = P0e
ktd .

Dividing both sides by P0 and taking logarithms, we find

ktd = ln 2,
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so that the doubling time is

td = 1

k
ln 2.

Example 1.5.1 The number of bacteria in a certain culture grows at a rate that is proportional to the
number present. If the number increased from 500 to 2000 in 2 hours, determine

1. the number present after 12 hours.

2. the doubling time.

Solution: The behavior of the system is governed by the differential equation

dP

dt
= kP,

so that

P(t) = P0e
kt ,

where the time t is measured in hours. Taking t = 0 as the time when the population
was 500, we have P0 = 500. Thus,

P(t) = 500ekt .

Further, P(2) = 2000 implies that

2000 = 500e2k,

so that

k = 1

2
ln 4 = ln 2.

Consequently,

P(t) = 500et ln 2.

1. The number of bacteria present after 12 hours is therefore

P(12) = 500e12 ln 2 = 500(212) = 2, 048, 000.

2. The doubling time of the system is

td = 1

k
ln 2 = 1 hour. �

Logistic Population Model
The Malthusian growth law (1.5.1) does not provide an accurate model for the growth of
a population over a long time period. To obtain a more realistic model we need to take
account of the fact that as the population increases, several factors will begin to affect the
growth rate. For example, there will be increased competition for the limited resources
that are available, increases in disease, and overcrowding of the limited available space,
all of which would serve to slow the growth rate. In order to model this situation mathe-
matically, we modify the differential equation leading to the simple exponential growth
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law by adding in a term that slows the growth down as the population increases. If we
consider a closed environment (neglecting factors such as immigration and emigration),
then the rate of change of population can be modeled by the differential equation

dP

dt
= [B(t)−D(t)]P,

where B(t) and D(t) denote the birth rate and death rate per individual, respectively.
The simple exponential law corresponds to the case when B(t) = k and D(t) = 0. In
the more general situation of interest now, the increased competition as the population
grows will result in a corresponding increase in the death rate per individual. Perhaps
the simplest way to take account of this is to assume that the death rate per individual is
directly proportional to the instantaneous population, and that the birth rate per individual
remains constant. The resulting initial-value problem governing the population growth
can then be written as

dP

dt
= (B0 −D0P)P, P (0) = P0,

where B0 and D0 are positive constants. It is useful to write the differential equation in
the equivalent form

dP

dt
= r

(
1− P

C

)
P, (1.5.2)

where r = B0, andC = B0/D0. Equation (1.5.2) is called the logistic equation, and the
corresponding population model is called the logistic model. The differential equation
(1.5.2) is separable and can be solved without difficulty. Before doing that, however, we
give a qualitative analysis of the differential equation.

The constantC in Equation (1.5.2) is called the carrying capacity of the population.
We see from Equation (1.5.2) that if P < C, then dP/dt > 0 and the population
increases, whereas if P > C, then dP/dt < 0 and the population decreases. We can
therefore interpret C as representing the maximum population that the environment can
sustain. We note that P(t) = C is an equilibrium solution to the differential equation,
as is P(t) = 0. The isoclines for Equation (1.5.2) are determined from

r

(
1− P

C

)
P = k,

where k is a constant. This can be written as

P 2 − CP + kC
r
= 0,

so that the isoclines are the lines

P = 1

2

(
C ±

√
C2 − 4kC

r

)
.

This tells us that the slopes of the solution curves satisfy

C2 − 4kC

r
≥ 0,

so that

k ≤ rC/4.
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Furthermore, the largest value that the slope can assume is k = rC/4, which corresponds
to P = C/2. We also note that the slope approaches zero as the solution curves approach
the equilibrium solutionsP(t) = 0 andP(t) = C. Differentiating Equation (1.5.2) yields

d2P

dt2
= r

[(
1− P

C

)
dP

dt
− P
C

dP

dt

]
= r

(
1− 2

P

C

)
dP

dt
= r2

C2
(C − 2P)(C − P)P,

where we have substituted for dP/dt from (1.5.2) and simplified the result. SinceP = C
and P = 0 are solutions to the differential equation (1.5.2), the only points of inflection
occur along the line P = C/2. The behavior of the concavity is therefore given by the
following schematic:

sign of P ′′: | + + ++ |− −−− |+ +++
P -interval: 0 C/2 C

This information determines the general behavior of the solution curves to the dif-
ferential equation (1.5.2). Figure 1.5.1 gives a Maple plot of the slope field and some
representative solution curves. Of course, such a figure could have been constructed by
hand, using the information we have obtained. From Figure 1.5.1, we see that if the
initial population is less than the carrying capacity, then the population increases mono-
tonically toward the carrying capacity. Similarly, if the initial population is bigger than
the carrying capacity, then the population monotonically decreases toward the carrying
capacity. Once more this illustrates the power of the qualitative techniques that have
been introduced for analyzing first-order differential equations.

C/2

C

t

P

Figure 1.5.1: Representative slope field and some approximate solution curves for the logistic
equation.

We turn now to obtaining an analytical solution to the differential equation (1.5.2).
Separating the variables in Equation (1.5.2) and integrating yields∫

C

P(C − P) dP = rt + c1,

where c1 is an integration constant. Using a partial-fraction decomposition on the left-
hand side, we find ∫ (

1

P
+ 1

C − P
)
dP = rt + c1,
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which upon integration gives

ln

∣∣∣∣ P

C − P
∣∣∣∣ = rt + c1.

Exponentiating, and redefining the integration constant, yields

P

C − P = c2e
rt ,

which can be solved algebraically for P to obtain

P(t) = c2Ce
rt

1+ c2ert
,

or equivalently,

P(t) = c2C

c2 + e−rt .

Imposing the initial condition P(0) = P0,we find that c2 = P0/(C−P0). Inserting this
value of c2 into the preceding expression for P(t) yields

P(t) = CP0

P0 + (C − P0)e−rt
. (1.5.3)

We make two comments regarding this formula. First, we see that, owing to the negative
exponent of the exponential term in the denominator, as t → ∞ the population does
indeed tend to the carrying capacityC independently of the initial populationP0. Second,
by writing (1.5.3) in the equivalent form

P(t) = P0

P0/C + (1− P0/C)e−rt
,

it follows that if P0 is very small compared to the carrying capacity, then for small t the
terms involving P0 in the denominator can be neglected, leading to the approximation

P(t) ≈ P0e
rt .

Consequently, in this case, the Malthusian population model does approximate the lo-
gistic model for small time intervals.

Although we now have a formula for the solution to the logistic population model, the
qualitative analysis is certainly enlightening with regard to the general overall properties
of the solution. Of course if we want to investigate specific details of a particular model,
then we use the corresponding exact solution (1.5.3).

Example 1.5.2 The initial population (measured in thousands) of a city is 20. After 10 years this has
increased to 50.87, and after 15 years to 78.68. Use the logistic model to predict the
population after 30 years.

Solution: In this problem we have P0 = P(0) = 20, P(10) = 50.87, P(15) =
78.68, and we wish to find P(30). Substituting for P0 into Equation (1.5.3) yields

P(t) = 20C

20+ (C − 20)e−rt
. (1.5.4)
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Figure 1.5.2: Solution curve corresponding to the population model in Example 1.5.2. The
population is measured in thousands of people.

Imposing the two remaining auxiliary conditions leads to the following pair of equations
for determining r and C:

50.87 = 20C

20+ (C − 20)e−10r
,

78.68 = 20C

20+ (C − 20)e−15r
.

This is a pair of nonlinear equations that are tedious to solve by hand. We therefore turn
to technology. Using the algebraic capabilities of Maple, we find that

r ≈ 0.1, C ≈ 500.37.

Substituting these values of r and C in Equation (1.5.4) yields

P(t) = 10007.4

20+ 480.37e−0.1t
.

Accordingly, the predicted value of the population after 30 years is

P(30) = 10007.4

20+ 480.37e−3
= 227.87.

A sketch of P(t) is given in Figure 1.5.2. �

Exercises for 1.5

Key Terms

Malthusian growth model, Doubling time, Logistic growth
model, Carrying capacity.

Skills

• Be able to solve the basic differential equations de-
scribing the Malthusian and logistic population growth
models.

• Be able to solve word problems involving initial con-
ditions, doubling time, etc., for the Malthusian and
logistic population growth models.

• Be able to compute the carrying capacity for a logistic
population model.

• Be able to discuss the qualitative behavior of a pop-
ulation governed by a Malthusian or logistic model,
based on initial values, doubling time, and so on as a
function of time.
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True-False Review
For Questions 1–10, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. A population whose growth rate at any given time is
proportional to its size at that time obeys the Malthu-
sian growth model.

2. If a population obeys the logistic growth model, then
its size can never exceed the carrying capacity of the
population.

3. The differential equations which describe population
growth according to the Malthusian model and the lo-
gistic model are both separable.

4. The rate of change of a population whose growth is
described with the logistic model eventually tends to-
ward zero, regardless of the initial population.

5. If the doubling time of a population governed by the
Malthusian growth model is five minutes, then the ini-
tial population increases 64-fold in a half-hour.

6. If a population whose growth is based on the Malthu-
sian growth model has a doubling time of 10 years,
then it takes approximately 30–40 years in order for
the initial population size to increase tenfold.

7. The population growth rate according to the Malthu-
sian growth model is always constant.

8. The logistic population model always has exactly two
equilibrium solutions.

9. The concavity of the graph of population governed by
the logistic model changes if and only if the initial
population is less than the carrying capacity.

10. The concavity of the graph of a population governed
by the Malthusian growth model never changes, re-
gardless of the initial population.

Problems
1. The number of bacteria in a culture grows at a rate pro-

portional to the number present. Initially there were 10
bacteria in the culture. If the doubling time of the cul-
ture is 3 hours, find the number of bacteria that were
present after 24 hours.

2. The number of bacteria in a culture grows at a rate pro-
portional to the number present. After 10 hours, there
were 5000 bacteria present, and after 12 hours, 6000

bacteria. Determine the initial size of the culture and
the doubling time of the population.

3. A certain cell culture has a doubling time of 4 hours.
Initially there were 2000 cells present. Assuming an
exponential growth law, determine the time it takes for
the culture to contain 106 cells.

4. At time t , the population P(t) of a certain city is in-
creasing at a rate proportional to the number of res-
idents in the city at that time. In January 1990 the
population of the city was 10,000, and by 1995 it had
risen to 20,000.

(a) What will the population of the city be at the be-
ginning of the year 2010?

(b) In what year will the population reach one
million?

In the logistic population model (1.5.3), if P(t1) = P1 and
P(2t1) = P2, then it can be shown (through some algebra
performed tediously by hand, or easily on a computer algebra
system) that

r = 1

t1
ln

[
P2(P1 − P0)

P0(P2 − P1)

]
, (1.5.5)

C = P1[P1(P0 + P2)− 2P0P2]
P 2

1 − P0P2
. (1.5.6)

These formulas will be used in Problems 5–7.

5. The initial population in a small village is 500. After
5 years this has grown to 800 and after 10 years to
1000. Using the logistic population model, determine
the population after 15 years.

6. An animal sanctuary had an initial population of 50 an-
imals. After two years the population was 62 and after
four years 76. Using the logistic population model,
determine the carrying capacity and the number of an-
imals in the sanctuary after 20 years.

7. (a) Using Equations (1.5.5) and (1.5.6), and the fact
that r and C are positive, derive two inequalities
that P0, P1, P2 must satisfy in order for there to
be a solution to the logistic equation satisfying
the conditions

P(0) = P0, P (t1) = P1, P (2t1) = P2.

(b) The initial population in a town is 10,000. After
5 years this has grown to 12,000, and after 10
years to 18,000. Is there a solution to the logistic
equation that fits this data?
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8. Of the 1500 passengers, crew, and staff that board a
cruise ship, 5 have the flu. After one day of sailing,
the number of infected people has risen to 10. As-
suming that the rate at which the flu virus spreads is
proportional to the product of the number of infected
individuals and the number not yet infected, determine
how many people will have the flu at the end of the
14-day cruise. Would you like to be a member of the
customer relations department for the cruise line the
day after the ship docks?

9. Consider the population model

dP

dt
= r(P − T )P, P (0) = P0, (1.5.7)

where r, T , and P0 are positive constants.

(a) Perform a qualitative analysis of the differential
equation in the initial-value problem (1.5.7), fol-
lowing the steps used in the text for the logistic
equation. Identify the equilibrium solutions, the
isoclines, and the behavior of the slope and con-
cavity of the solution curves.

(b) Using the information obtained in (a), sketch the
slope field for the differential equation and in-
clude representative solution curves.

(c) What predictions can you make regarding the
behavior of the population? Consider the cases
P0 < T and P0 > T . The constant T is called
the threshold level. Based on your predictions,
why is this an appropriate term to use for T ?

10. In the preceding problem, a qualitative analysis of the
differential equation in (1.5.7) was carried out. In this
problem, we determine the exact solution to the dif-
ferential equation and verify the predictions from the
qualitative analysis.

(a) Solve the initial-value problem (1.5.7).

(b) Using your solution from (a), verify that if P0 <

T , then lim
t→∞P(t) = 0. What does this mean for

the population?

(c) Using your solution from (a), verify that if P0 >

T , then each solution curve has a vertical asymp-
tote at t = te, where

te = 1

rT
ln

(
P0

P0 − T
)
.

How do you interpret this result in terms of pop-
ulation growth? Note that this was not obvious
from the qualitative analysis performed in the pre-
vious problem.

11. As a modification to the population model considered
in the previous two problems, suppose that P(t) sat-
isfies the initial-value problem

dP

dt
= r(C − P)(P − T )P, P (0) = P0,

where r, C, T , P0 are positive constants, and 0 < T <

C. Perform a qualitative analysis of this model. Sketch
the slope field and some representative solution curves
in the three cases 0 < P0 < T , T < P0 < C, and
P0 > C. Describe the behavior of the corresponding
solutions.

The next two problems consider the Gompertz population
model, which is governed by the initial-value problem

dP

dt
= rP (lnC − lnP), P (0) = P0, (1.5.8)

where r, C, and P0 are positive constants.

12. Determine all equilibrium solutions for the differen-
tial equation in (1.5.8), and the behavior of the slope
and concavity of the solution curves. Use this informa-
tion to sketch the slope field and some representative
solution curves.

13. Solve the initial-value problem (1.5.8) and verify that
all solutions satisfy lim

t→∞P(t) = C.

Problems 14–16 consider the phenomenon of exponential
decay. This occurs when a population P(t) is governed by
the differential equation

dP

dt
= kP,

where k is a negative constant.

14. A population of swans in a wildlife sanctuary is de-
clining due to the presence of dangerous chemicals in
the water. If the population of swans is experiencing
exponential decay, and if there were 400 swans in the
park at the beginning of the summer and 340 swans
30 days later,

(a) How many swans are in the park 60 days after
the start of summer? 100 days after the start of
summer?

(b) How long does it take for the population of swans
to be cut in half? (This is known as the half-life
of the population.)
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15. At the conclusion of the Super Bowl, the number of
fans remaining in the stadium decreases at a rate pro-
portional to the number of fans in the stadium. Assume
that there are 100,000 fans in the stadium at the end of
the Super Bowl and ten minutes later there are 80,000
fans in the stadium.

(a) Thirty minutes after the Super Bowl will there be
more or less than 40,000 fans? How do you know
this without doing any calculations?

(b) What is the half-life (see the previous problem)
for the fan population in the stadium?

(c) When will there be only 15,000 fans left in the
stadium?

(d) Explain why the exponential decay model for the
population of fans in the stadium is not realistic
from a qualitative perspective.

16. Cobalt-60, an isotope used in cancer therapy, decays
exponentially with a half-life of 5.2 years (i.e., half
the original sample remains after 5.2 years). How long
does it take for a sample of cobalt-60 to disintegrate
to the extent that only 4% of the original amount re-
mains?

17. � Use some form of technology to solve the pair of
equations

P1 = CP0

P0 + (C − P0)e−rt1
,

P2 = CP0

P0 + (C − P0)e−2rt1
,

for r and C, and thereby derive the expressions given
in Equations (1.5.5) and (1.5.6).

18. � According to data from the U.S. Bureau of the Cen-
sus, the population (measured in millions of people)
of the United States in 1950, 1960, and 1970 was, re-
spectively, 151.3, 179.4, and 203.3.

(a) Using the 1950 and 1960 population figures, solve
the corresponding Malthusian population model.

(b) Determine the logistic model corresponding to
the given data.

(c) On the same set of axes, plot the solution curves
obtained in (a) and (b). From your plots, deter-
mine the values the different models would have
predicted for the population in 1980 and 1990,
and compare these predictions to the actual val-
ues of 226.54 and 248.71, respectively.

19. � In a period of five years, the population of a city
doubles from its initial size of 50 (measured in thou-
sands of people). After ten more years, the population
has reached 250. Determine the logistic model corre-
sponding to this data. Sketch the solution curve and
use your plot to estimate the time it will take for the
population to reach 95% of the carrying capacity.

1.6 First-Order Linear Differential Equations

In this section we derive a technique for determining the general solution to any first-order
linear differential equation. This is the most important technique in the chapter.

DEFINITION 1.6.1

A differential equation that can be written in the form

a(x)
dy

dx
+ b(x)y = r(x) (1.6.1)

where a(x), b(x), and r(x) are functions defined on an interval (a, b), is called a
first-order linear differential equation.

We assume that a(x) �= 0 on (a, b) and divide both sides of (1.6.1) by a(x) to obtain
the standard form

dy

dx
+ p(x)y = q(x), (1.6.2)

wherep(x) = b(x)/a(x) and q(x) = r(x)/a(x). The idea behind the solution technique


