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1.6 First-Order Linear Differential Equations 49

15. At the conclusion of the Super Bowl, the number of
fans remaining in the stadium decreases at a rate pro-
portional to the number of fans in the stadium. Assume
that there are 100,000 fans in the stadium at the end of
the Super Bowl and ten minutes later there are 80,000
fans in the stadium.

(a) Thirty minutes after the Super Bowl will there be
more or less than 40,000 fans? How do you know
this without doing any calculations?

(b) What is the half-life (see the previous problem)
for the fan population in the stadium?

(c) When will there be only 15,000 fans left in the
stadium?

(d) Explain why the exponential decay model for the
population of fans in the stadium is not realistic
from a qualitative perspective.

16. Cobalt-60, an isotope used in cancer therapy, decays
exponentially with a half-life of 5.2 years (i.e., half
the original sample remains after 5.2 years). How long
does it take for a sample of cobalt-60 to disintegrate
to the extent that only 4% of the original amount re-
mains?

17. � Use some form of technology to solve the pair of
equations

P1 = CP0

P0 + (C − P0)e−rt1
,

P2 = CP0

P0 + (C − P0)e−2rt1
,

for r and C, and thereby derive the expressions given
in Equations (1.5.5) and (1.5.6).

18. � According to data from the U.S. Bureau of the Cen-
sus, the population (measured in millions of people)
of the United States in 1950, 1960, and 1970 was, re-
spectively, 151.3, 179.4, and 203.3.

(a) Using the 1950 and 1960 population figures, solve
the corresponding Malthusian population model.

(b) Determine the logistic model corresponding to
the given data.

(c) On the same set of axes, plot the solution curves
obtained in (a) and (b). From your plots, deter-
mine the values the different models would have
predicted for the population in 1980 and 1990,
and compare these predictions to the actual val-
ues of 226.54 and 248.71, respectively.

19. � In a period of five years, the population of a city
doubles from its initial size of 50 (measured in thou-
sands of people). After ten more years, the population
has reached 250. Determine the logistic model corre-
sponding to this data. Sketch the solution curve and
use your plot to estimate the time it will take for the
population to reach 95% of the carrying capacity.

1.6 First-Order Linear Differential Equations

In this section we derive a technique for determining the general solution to any first-order
linear differential equation. This is the most important technique in the chapter.

DEFINITION 1.6.1

A differential equation that can be written in the form

a(x)
dy

dx
+ b(x)y = r(x) (1.6.1)

where a(x), b(x), and r(x) are functions defined on an interval (a, b), is called a
first-order linear differential equation.

We assume that a(x) �= 0 on (a, b) and divide both sides of (1.6.1) by a(x) to obtain
the standard form

dy

dx
+ p(x)y = q(x), (1.6.2)

wherep(x) = b(x)/a(x) and q(x) = r(x)/a(x). The idea behind the solution technique
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for (1.6.2) is to rewrite the differential equation in the form

d

dx
[g(x, y)] = F(x)

for an appropriate function g(x, y). The general solution to the differential equation can
then be obtained by an integration with respect to x. First consider an example.

Example 1.6.2 Solve the differential equation

dy

dx
+ 1

x
y = ex, x > 0. (1.6.3)

Solution: If we multiply (1.6.3) by x, we obtain

x
dy

dx
+ y = xex.

But, from the product rule for differentiation, the left-hand side of this equation is just

the expanded form of
d

dx
(xy). Thus (1.6.3) can be written in the equivalent form

d

dx
(xy) = xex.

Integrating both sides of this equation with respect to x, we obtain

xy = xex − ex + c.
Dividing by x yields the general solution to (1.6.3) as

y(x) = x−1[ex(x − 1)+ c],
where c is an arbitrary constant. �

In the preceding example we multiplied the given differential equation by the func-
tion I (x) = x. This had the effect of reducing the left-hand side of the resulting differ-
ential equation to the integrable form

d

dx
(xy).

Motivated by this example, we now consider the possibility of multiplying the general
linear differential equation

dy

dx
+ p(x)y = q(x) (1.6.4)

by a nonzero function I (x), chosen in such a way that the left-hand side of the resulting
differential equation is

d

dx
[I (x)y].

Henceforth we will assume that the functions p and q are continuous on (a, b). Multi-
plying the differential equation (1.6.4) by I (x) yields

I
dy

dx
+ p(x)Iy = Iq(x). (1.6.5)
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1.6 First-Order Linear Differential Equations 51

Furthermore, from the product rule for derivatives, we know that

d

dx
(Iy) = I dy

dx
+ dI
dx
y. (1.6.6)

Comparing Equations (1.6.5) and (1.6.6), we see that Equation (1.6.5) can indeed be
written in the integrable form

d

dx
(Iy) = Iq(x),

provided the function I (x) is a solution to5

I
dy

dx
+ p(x)Iy = I dy

dx
+ dI
dx
y.

This will hold whenever I (x) satisfies the separable differential equation

dI

dx
= p(x)I. (1.6.7)

Separating the variables and integrating yields

ln |I | =
∫
p(x) dx + c,

so that

I (x) = c1e
∫
p(x)dx,

where c1 is an arbitrary constant. Since we require only one solution to Equation (1.6.7),
we set c1 = 1, in which case

I (x) = e
∫
p(x)dx.

We can therefore draw the following conclusion.
Multiplying the linear differential equation

dy

dx
+ p(x)y = q(x) (1.6.8)

by I (x) = e
∫
p(x)dx reduces it to the integrable form

d

dx

[
e
∫
p(x)dxy

]
= q(x)e

∫
p(x)dx. (1.6.9)

The general solution to (1.6.8) can now be obtained from (1.6.9) by integration.
Formally we have

y(x) = e−
∫
p(x) dx

[∫
q(x)e

∫
p(x)dx dx + c

]
. (1.6.10)

5This is obtained by equating the left-hand side of Equation (1.6.5) to the right-hand side of Equation (1.6.6).



“main”
2007/2/16
page 52

�

�

�

�

�

�

�

�
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Remarks

1. The function I (x) = e
∫
p(x)dx is called an integrating factor for the differential

equation (1.6.8), since it enables us to reduce the differential equation to a form
that is directly integrable.

2. It is not necessary to memorize (1.6.10). In a specific problem, we first evaluate
the integrating factor e

∫
p(x)dx and then use (1.6.9).

Example 1.6.3 Solve the initial-value problem

dy

dx
+ xy = xex2/2, y(0) = 1.

Solution: An appropriate integrating factor in this case is

I (x) = e
∫
x dx = ex2/2.

Multiplying the given differential equation by I and using (1.6.9) yields

d

dx
(ex

2/2y) = xex2
.

Integrating both sides with respect to x, we obtain

ex
2/2y = 1

2e
x2 + c.

Hence,

y(x) = e−x2/2( 1
2e
x2 + c).

Imposing the initial condition y(0) = 1 yields

1 = 1
2 + c,

so that c = 1
2 . Thus the required particular solution is

y(x) = 1
2e
−x2/2(ex

2 + 1) = 1
2 (e

x2/2 + e−x2/2) = cosh(x2/2). �

Example 1.6.4 Solve x
dy

dx
+ 2y = cos x, x > 0.

Solution: We first write the given differential equation in standard form. Dividing by
x yields

dy

dx
+ 2x−1y = x−1 cos x. (1.6.11)

An integrating factor is

I (x) = e
∫

2x−1dx = e2 ln x = x2,
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so that upon multiplying Equation (1.6.11) by I , we obtain

d

dx
(x2y) = x cos x.

Integrating and rearranging gives

y(x) = x−2(x sin x + cos x + c),
where we have used integration by parts on the right-hand side. �

Example 1.6.5 Solve the initial-value problem

y′ − y = f (x), y(0) = 0,

where f (x) =
{

1, if x < 1,

2− x, if x ≥ 1.

Solution: We have sketched f (x) in Figure 1.6.1. An integrating factor for the dif-
ferential equation is I (x) = e−x .

x

f(x)

1

1 2

Figure 1.6.1: A sketch of the function f (x) from Example 1.6.5.

Upon multiplication by the integrating factor, the differential equation reduces to

d

dx
(e−xy) = e−xf (x).

We now integrate this differential equation over the interval [0, x]. To do so we need to
use a dummy integration variable, which we denote by w. We therefore obtain

[
e−wy(w)

]x
0 =

∫ x

0
e−wf (w) dw,

or equivalently,

e−xy(x)− y(0) =
∫ x

0
e−wf (w) dw.

Multiplying by ex and substituting for y(0) = 0 yields

y(x) = ex
∫ x

0
e−wf (w) dw. (1.6.12)
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Owing to the form of f (x), the value of the integral on the right-hand side will depend
on whether x < 1 or x ≥ 1. If x < 1, then f (w) = 1, and so (1.6.12) can be written as

y(x) = ex
∫ x

0
e−w dw = ex(1− e−x),

so that

y(x) = ex − 1, x < 1.

If x ≥ 1, then the interval of integration [0, x]must be split into two parts. From (1.6.12)
we have

y(x) = ex
[∫ 1

0
e−w dw +

∫ x

1
(2− w)e−w

]
dw.

A straightforward integration leads to

y(x) = ex
{
(1− e−1)+

[
− 2e−w + we−w + e−w

]x
1

}
,

which simplifies to

y(x) = ex(1− e−1)+ x − 1.

The solution to the initial-value problem can therefore be written as

y(x) =
{
ex − 1, if x < 1,

ex(1− e−1)+ x − 1, if x ≥ 1.

A sketch of the corresponding solution curve is given in Figure 1.6.2.

3

5

10

15

x

y

21�1�2

Figure 1.6.2: The solution curve for the initial-value problem in Example 1.6.5. The dashed
curve is the continuation of y(x) = ex − 1 for x > 1.

Differentiating both branches of this function, we find

y′(x) =
{
ex, if x < 1,

ex(1− e−1)+ 1, if x ≥ 1.
y′′(x) =

{
ex, if x < 1,

ex(1− e−1), if x ≥ 1.

We see that even though the function f in the original differential equation was not dif-
ferentiable at x = 1, the solution to the initial-value problem has a continuous derivative
at that point. The discontinuity in the derivative of the driving term does show up in the
second derivative of the solution, as indeed it must. �
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Exercises for 1.6

Key Terms
First-order linear differential equation, Integrating factor.

Skills

• Be able to recognize a first-order linear differential
equation.

• Be able to find an integrating factor for a given first-
order linear differential equation.

• Be able to solve a first-order linear differential equa-
tion.

True-False Review
For Questions 1–5, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. There is a unique integrating factor for a differential
equation of the form y′ + p(x)y = q(x).

2. An integrating factor for the differential equation
y′ + p(x)y = q(x) is e

∫
p(x)dx .

3. Upon multiplying the differential equation y′ +
p(x)y = q(x) by an integrating factor I (x), the dif-
ferential equation becomes (I (x) · y)′ = q(x)I .

4. An integrating factor for the differential equation

dy

dx
= x2y + sin x

is I (x) = e
∫
x2dx .

5. An integrating factor for the differential equation

dy

dx
= x − y

x

is I (x) = 5x.

Problems
For Problems 1–14, solve the given differential equation.

1.
dy

dx
− y = e2x .

2. x2y′ − 4xy = x7 sin x, x > 0.

3. y′ + 2xy = 2x3.

4.
dy

dx
+ 2x

1− x2
y = 4x, −1 < x < 1.

5.
dy

dx
+ 2x

1+ x2
y = 4

(1+ x2)2
.

6. 2(cos2 x)y′ + y sin 2x = 4 cos4 x,

0 ≤ x < π/2.

7. y′ + 1

x ln x
y = 9x2.

8. y′ − y tan x = 8 sin3 x.

9. t
dx

dt
+ 2x = 4et , t > 0.

10. y′ = sin x(y sec x − 2).

11. (1− y sin x) dx − (cos x) dy = 0.

12. y′ − x−1y = 2x2 ln x.

13. y′ + αy = eβx , where α, β are constants.

14. y′ +mx−1y = ln x, where m is constant.

In Problems 15–20, solve the given initial-value problem.

15. y′ + 2x−1y = 4x, y(1) = 2.

16. (sin x)y′ − y cos x = sin 2x, y(π/2) = 2.

17.
dx

dt
+ 2

4− t x = 5, x(0) = 4.

18. (y − ex) dx + dy = 0, y(0) = 1.

19. y′ + y = f (x), y(0) = 3, where

f (x) =
{

1, if x ≤ 1,

0, if x > 1.

20. y′ − 2y = f (x), y(0) = 1, where

f (x) =
{

1− x, if x < 1,

0, if x ≥ 1.

21. Solve the initial-value problem in Example 1.6.5 as
follows. First determine the general solution to the
differential equation on each interval separately. Then
use the given initial condition to find the appropriate
integration constant for the interval (−∞, 1). To deter-
mine the integration constant on the interval [1,∞),
use the fact that the solution must be continuous at
x = 1.
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22. Find the general solution to the second-order differen-
tial equation

d2y

dx2
+ 1

x

dy

dx
= 9x, x > 0.

[Hint: Let u = dy/dx.]

23. Solve the differential equation for Newton’s law of
cooling by viewing it as a first-order linear differential
equation.

24. Suppose that an object is placed in a medium whose
temperature is increasing at a constant rate of α◦F per
minute. Show that, according to Newton’s law of cool-
ing, the temperature of the object at time t is given by

T (t) = α(t − k−1)+ c1 + c2e
−kt ,

where c1 and c2 are constants.

25. Between 8 a.m. and 12 p.m. on a hot summer day, the
temperature rose at a rate of 10◦F per hour from an
initial temperature of 65◦F. At 9 a.m. the temperature
of an object was measured to be 35◦F and was, at that
time, increasing at a rate of 5◦F per hour. Show that
the temperature of the object at time t was

T (t) = 10t − 15+ 40e(1−t)/8, 0 ≤ t ≤ 4.

26. It is known that a certain object has constant of pro-
portionality k = 1/40 in Newton’s law of cooling.
When the temperature of this object is 0◦F, it is placed
in a medium whose temperature is changing in time
according to

Tm(t) = 80e−t/20.

(a) Using Newton’s law of cooling, show that the
temperature of the object at time t is

T (t) = 80(e−t/40 − e−t/20).

(b) What happens to the temperature of the object as
t →+∞? Is this reasonable?

(c) Determine the time, tmax, when the temperature
of the object is a maximum. Find T (tmax) and
Tm(tmax).

(d) Make a sketch to depict the behavior of T (t) and
Tm(t).

27. The differential equation

dT

dt
= −k1[T − Tm(t)] + A0, (1.6.13)

where k1 andA0 are positive constants, can be used to
model the temperature variation T (t) in a building. In
this equation, the first term on the right-hand side gives
the contribution due to the variation in the outside tem-
perature, and the second term on the right-hand side
gives the contribution due to the heating effect from
internal sources such as machinery, lighting, people,
and so on. Consider the case when

Tm(t) = A− B cosωt, ω = π/12, (1.6.14)

where A and B are constants, and t is measured in
hours.

(a) Make a sketch of Tm(t). Taking t = 0 to corre-
spond to midnight, describe the variation of the
external temperature over a 24-hour period.

(b) With Tm given in (1.6.14), solve (1.6.13) subject
to the initial condition T (0) = T0.

28. This problem demonstrates the variation-of-
parameters method for first-order linear differential
equations. Consider the first-order linear differential
equation

y′ + p(x)y = q(x). (1.6.15)

(a) Show that the general solution to the associated
homogeneous equation

y′ + p(x)y = 0

is
yH (x) = c1e

− ∫p(x)dx.
(b) Determine the function u(x) such that

y(x) = u(x)e−
∫
p(x)dx

is a solution to (1.6.15), and hence derive the gen-
eral solution to (1.6.15).

For Problems 29–32, use the technique derived in the previ-
ous problem to solve the given differential equation.

29. y′ + x−1y = cos x, x > 0.

30. y′ + y = e−2x .

31. y′ + y cot x = 2 cos x, 0 < x < π .

32. xy′ − y = x2 ln x.
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For Problems 33–38, use a differential equation solver to de-
termine the solution to each of the initial-value problems and
sketch the corresponding solution curve.

33. � The initial-value problem in Problem 15.

34. � The initial-value problem in Problem 16.

35. � The initial-value problem in Problem 17.

36. � The initial-value problem in Problem 18.

37. � The initial-value problem in Problem 19.

38. � The initial-value problem in Problem 20.

1.7 Modeling Problems Using First-Order Linear Differential Equations

There are many examples of applied problems whose mathematical formulation leads
to a first-order linear differential equation. In this section we analyze two in detail.

Mixing Problems

Statement of the Problem: Consider the situation depicted in Figure 1.7.1. A tank initially
contains V0 liters of a solution in which is dissolved A0 grams of a certain chemical. A
solution containing c1 grams/liter of the same chemical flows into the tank at a constant
rate of r1 liters/minute, and the mixture flows out at a constant rate of r2 liters/minute. We
assume that the mixture is kept uniform by stirring. Then at any time t the concentration
of chemical in the tank, c2(t), is the same throughout the tank and is given by

c2 = A(t)

V (t)
, (1.7.1)

where V (t) denotes the volume of solution in the tank at time t and A(t) denotes the
amount of chemical in the tank at time t .

Solution of concentration c1 grams/liter 
flows in at a rate of r1 liters/minute

A(t) � amount of chemical in the tank at time t 
V(t) � volume of solution in the tank at time t 
c2(t) � A(t)/V(t) � concentration of chemical in the tank at time t

Solution of concentration 
c2 grams/liter flows out at 
a rate of r2 liters/minute

Figure 1.7.1: A mixing problem.

Mathematical Formulation: The two functions in the problem are V (t) and A(t). In

order to determine how they change with time, we first consider their change during a
short time interval, 
t minutes. In time 
t , r1 
t liters of solution flow into the tank,
whereas r2 
t liters flow out. Thus during the time interval
t , the change in the volume
of solution in the tank is


V = r1 
t − r2 
t = (r1 − r2) 
t. (1.7.2)

Since the concentration of chemical in the inflow is c1 grams/liter (assumed constant),

it follows that in the time interval 
t the amount of chemical that flows into the tank is
c1r1 
t . Similarly, the amount of chemical that flows out in this same time interval is
approximately6 c2r2 
t . Thus, the total change in the amount of chemical in the tank

6This is only an approximation, since c2 is not constant over the time interval
t . The approximation will
become more accurate as 
t → 0.


