
“main”
2007/2/16
page 57

�

�

�

�

�

�

�

�

1.7 Modeling Problems Using First-Order Linear Differential Equations 57

For Problems 33–38, use a differential equation solver to de-
termine the solution to each of the initial-value problems and
sketch the corresponding solution curve.

33. � The initial-value problem in Problem 15.

34. � The initial-value problem in Problem 16.

35. � The initial-value problem in Problem 17.

36. � The initial-value problem in Problem 18.

37. � The initial-value problem in Problem 19.

38. � The initial-value problem in Problem 20.

1.7 Modeling Problems Using First-Order Linear Differential Equations

There are many examples of applied problems whose mathematical formulation leads
to a first-order linear differential equation. In this section we analyze two in detail.

Mixing Problems

Statement of the Problem: Consider the situation depicted in Figure 1.7.1. A tank initially
contains V0 liters of a solution in which is dissolved A0 grams of a certain chemical. A
solution containing c1 grams/liter of the same chemical flows into the tank at a constant
rate of r1 liters/minute, and the mixture flows out at a constant rate of r2 liters/minute. We
assume that the mixture is kept uniform by stirring. Then at any time t the concentration
of chemical in the tank, c2(t), is the same throughout the tank and is given by

c2 = A(t)

V (t)
, (1.7.1)

where V (t) denotes the volume of solution in the tank at time t and A(t) denotes the
amount of chemical in the tank at time t .

Solution of concentration c1 grams/liter 
flows in at a rate of r1 liters/minute

A(t) � amount of chemical in the tank at time t 
V(t) � volume of solution in the tank at time t 
c2(t) � A(t)/V(t) � concentration of chemical in the tank at time t

Solution of concentration 
c2 grams/liter flows out at 
a rate of r2 liters/minute

Figure 1.7.1: A mixing problem.

Mathematical Formulation: The two functions in the problem are V (t) and A(t). In

order to determine how they change with time, we first consider their change during a
short time interval, 
t minutes. In time 
t , r1 
t liters of solution flow into the tank,
whereas r2 
t liters flow out. Thus during the time interval
t , the change in the volume
of solution in the tank is


V = r1 
t − r2 
t = (r1 − r2) 
t. (1.7.2)

Since the concentration of chemical in the inflow is c1 grams/liter (assumed constant),

it follows that in the time interval 
t the amount of chemical that flows into the tank is
c1r1 
t . Similarly, the amount of chemical that flows out in this same time interval is
approximately6 c2r2 
t . Thus, the total change in the amount of chemical in the tank

6This is only an approximation, since c2 is not constant over the time interval
t . The approximation will
become more accurate as 
t → 0.



“main”
2007/2/16
page 58

�

�

�

�

�

�

�

�
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during the time interval 
t , denoted by 
A, is approximately


A ≈ c1r1 
t − c2r2 
t = (c1r1 − c2r2) 
t. (1.7.3)

Dividing Equations (1.7.2) and (1.7.3) by 
t yields


V


t
= r1 − r2 and


A


t
≈ c1r1 − c2r2,

respectively. These equations describe the rates of change of V andA over the short, but
finite, time interval
t . In order to determine the instantaneous rates of change of V and
A, we take the limit as 
t → 0 to obtain

dV

dt
= r1 − r2 (1.7.4)

and

dA

dt
= c1r1 − A

V
r2, (1.7.5)

where we have substituted for c2 from Equation (1.7.1). Since r1 and r2 are constants,
we can integrate Equation (1.7.4) directly, obtaining

V (t) = (r1 − r2)t + V0,

where V0 is an integration constant. Substituting for V into Equation (1.7.5) and rear-
ranging terms yields the linear equation for A(t) :

dA

dt
+ r2

(r1 − r2)t + V0
A = c1r1. (1.7.6)

This differential equation can be solved, subject to the initial condition A(0) = A0, to
determine the behavior of A(t).

Remark The reader need not memorize Equation (1.7.6), since it is better to derive
it for each specific example.

Example 1.7.1 A tank contains 8 L (liters) of water in which is dissolved 32 g (grams) of chemical. A
solution containing 2 g/L of the chemical flows into the tank at a rate of 4 L/min, and
the well-stirred mixture flows out at a rate of 2 L/min.

1. Determine the amount of chemical in the tank after 20 minutes.

2. What is the concentration of chemical in the tank at that time?

Solution: We are given

r1 = 4 L/min, r2 = 2 L/min, c1 = 2 g/L, V (0) = 8 L, and A(0) = 32 g.

For parts 1 and 2, we must find A(20) and A(20)/V (20), respectively. Now,


V = r1 
t − r2 
t
implies that

dV

dt
= 2.
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Integrating this equation and imposing the initial condition that V (0) = 8 yields

V (t) = 2(t + 4). (1.7.7)

Further,


A ≈ c1r1 
t − c2r2 
t

implies that

dA

dt
= 8− 2c2.

That is, since c2 = A/V ,

dA

dt
= 8− 2

A

V
.

Substituting for V from (1.7.7), we must solve

dA

dt
+ 1

t + 4
A = 8. (1.7.8)

This first-order linear equation has integrating factor

I = e
∫

1/(t+4)dt = t + 4.

Consequently (1.7.8) can be written in the equivalent form

d

dt
[(t + 4)A] = 8(t + 4),

which can be integrated directly to obtain

(t + 4)A = 4(t + 4)2 + c.

Hence

A(t) = 1

t + 4
[4(t + 4)2 + c].

Imposing the given initial condition A(0) = 32 g implies that c = 64. Consequently

A(t) = 4

t + 4
[(t + 4)2 + 16].

Setting t = 20 gives us the values for parts 1 and 2:

1. We have

A(20) = 1

6
[(24)2 + 16] = 296

3
g.

2. Furthermore, using (1.7.7),

A(20)

V (20)
= 1

48
· 296

3
= 37

18
g/L. �
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Electric Circuits
An important application of differential equations arises from the analysis of simple
electric circuits. The most basic electric circuit is obtained by connecting the ends of
a wire to the terminals of a battery or generator. This causes a flow of charge, q(t),
measured in coulombs (C), through the wire, thereby producing a current, i(t), measured
in amperes (A), defined to be the rate of change of charge. Thus,

i(t) = dq

dt
. (1.7.9)

In practice a circuit will contain several components that oppose the flow of charge. As
current passes through these components, work has to be done, and the loss of energy is
described by the resulting voltage drop across each component. For the circuits that we
will consider, the behavior of the current in the circuit is governed by Kirchoff’s second
law, which can be stated as follows.

Kirchoff’s Second Law: The sum of the voltage drops around a closed circuit is zero.

In order to apply this law we need to know the relationship between the current
passing through each component in the circuit and the resulting voltage drop. The com-
ponents of interest to us are resistors, capacitors, and inductors. We briefly describe each
of these next.

1. Resistors: A resistor is a component that, owing to its constituency, directly resists
the flow of charge through it. According to Ohm’s law, the voltage drop, 
VR ,
between the ends of a resistor is directly proportional to the current that is passing
through it. This is expressed mathematically as


VR = iR (1.7.10)

where the constant of proportionality, R, is called the resistance of the resistor.
The units of resistance are ohms (�).

2. Capacitors: A capacitor can be thought of as a component that stores charge and
thereby opposes the passage of current. If q(t) denotes the charge on the capacitor
at time t , then the drop in voltage, 
VC , as current passes through it is directly
proportional to q(t). It is usual to express this law in the form


VC = 1

C
q, (1.7.11)

where the constant C is called the capacitance of the capacitor. The units of
capacitance are farads (F).

3. Inductors: The third component that is of interest to us is an inductor. This can be
considered as a component that opposes any change in the current flowing through
it. The drop in voltage as current passes through an inductor is directly proportional
to the rate at which the current is changing. We write this as


VL = Ldi
dt
, (1.7.12)

where the constant L is called the inductance of the inductor, measured in units
of henrys (H).

4. EMF: The final component in our circuits will be a source of voltage that produces
an electromotive force (EMF), driving the charge through the circuit. As current
passes through the voltage source, there is a voltage gain, which we denote by
E(t) volts (that is, a voltage drop of −E(t) volts).
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Resistance, R Switch

Capacitance, C

Inductance, L

E(t)

i(t)

Figure 1.7.2: A simple RLC circuit.

A circuit containing all of these components is shown in Figure 1.7.2. Such a circuit
is called an RLC circuit. According to Kirchoff’s second law, the sum of the voltage
drops at any instant must be zero. Applying this to the RLC circuit in Figure 1.7.2, we
obtain


VR +
VC +
VL − E(t) = 0. (1.7.13)

Substituting into Equation (1.7.13) from (1.7.10)–(1.7.12) and rearranging yields the
basic differential equation for an RLC circuit—namely,

L
di

dt
+ Ri + q

C
= E(t). (1.7.14)

Three cases are important in applications, two of which are governed by first-order
linear differential equations.

Case 1: An RL CIRCUIT. In the case when no capacitor is present, we have what is
referred to as an RL circuit. The differential equation (1.7.14) then reduces to

di

dt
+ R
L
i = 1

L
E(t). (1.7.15)

This is a first-order linear differential equation for the current in the circuit at any time t .

Case 2: An RC CIRCUIT. Now consider the case when no inductor is present in the
circuit. Setting L = 0 in Equation (1.7.14) yields

i + 1

RC
q = E

R
.

In this equation we have two unknowns, q(t) and i(t). Substituting from (1.7.9) for
i(t) = dq/dt, we obtain the following differential equation for q(t):

dq

dt
+ 1

RC
q = E

R
. (1.7.16)

In this case, the first-order linear differential equation (1.7.16) can be solved for the
charge q(t) on the plates of the capacitor. The current in the circuit can then be obtained
from

i(t) = dq

dt

by differentiation.

Case 3: An RLC CIRCUIT. In the general case, we must consider all three compo-
nents to be present in the circuit. Substituting from Equation (1.7.9) into Equation (1.7.14)
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yields the following differential equation for determining the charge on the capacitor:

d2q

dt2
+ R
L

dq

dt
+ 1

LC
q = 1

L
E(t).

We will develop techniques in Chapter 6 that enable us to solve this differential equation
without difficulty.

For the remainder of this section we restrict our attention to RL and RC circuits.Since
these are both first-order linear differential equations, we can solve them using the tech-
nique derived in the previous section, once the applied EMF, E(t), has been specified.
The two most important forms for E(t) are

E(t) = E0 and E(t) = E0 cosωt,

where E0 and ω are constants. The first of these corresponds to a source of EMF such
as a battery. The resulting current is called a direct current (DC). The second form of
EMF oscillates between ±E0 and is called an alternating current (AC).

Example 1.7.2 Determine the current in an RL circuit if the applied EMF is E(t) = E0 cosωt , where
E0 and ω are constants, and the initial current is zero.

Solution: Substituting into Equation (1.7.15) forE(t) yields the differential equation

di

dt
+ R
L
i = E0

L
cosωt,

which we write as

di

dt
+ ai = E0

L
cosωt, (1.7.17)

where a = R/L. An integrating factor for (1.7.17) is I (t) = eat , so that the equation
can be written in the equivalent form

d

dt
(eat i) = E0

L
eat cosωt.

Integrating this equation using the standard integral∫
eat cosωt dt = 1

a2 + ω2
eat (a cosωt + ω sinωt)+ c,

we obtain

eat i = E0

L(a2 + ω2)
eat (a cosωt + ω sinωt)+ c,

where c is an integration constant. Consequently,

i(t) = E0

L(a2 + ω2)
(a cosωt + ω sinωt)+ ce−at .

Imposing the initial condition i(0) = 0, we find

c = − E0a

L(a2 + ω2)
,
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so that

i(t) = E0

L(a2 + ω2)
(a cosωt + ω sinωt − ae−at ). (1.7.18)

This solution can be written in the form

i(t) = iS(t)+ iT (t),
where

iS(t) = E0

L(a2 + ω2)
(a cosωt + ω sinωt), iT (t) = − aE0

L(a2 + ω2)
e−at .

The term iT (t) decays exponentially with time and is referred to as the transient part
of the solution. As t →∞, the solution (1.7.18) approaches the steady-state solution,
iS(t). The steady-state solution can be written in a more illuminating form as follows.
If we construct the right-angled triangle (see Figure 1.7.3) with sides a and ω, then the
hypotenuse of the triangle is

√
a2 + ω2. Consequently, there exists a unique angle φ in

(0, π/2), such that

(a
2  �

 v
2 )1

/2

f

a

v

Figure 1.7.3: Defining the
phase angle for an RL circuit.

cosφ = a√
a2 + ω2

, sin φ = ω√
a2 + ω2

.

Equivalently,

a =
√
a2 + ω2 cosφ, ω =

√
a2 + ω2 sin φ.

Substituting for a and ω into the expression for iS yields

iS(t) = E0

L
√
a2 + ω2

(cosωt cosφ + sinωt sin φ),

which can be written, using an appropriate trigonometric identity, as

iS(t) = E0

L
√
a2 + ω2

cos(ωt − φ).

This is referred to as the phase-amplitude form of the solution. Comparing this with the
original driving term, E0 cosωt , we see that the system has responded with a steady-
state solution having the same periodic behavior, but with a phase shift of φ radians.
Furthermore the amplitude of the response is

A = E0

L
√
a2 + ω2

= E0√
R2 + ω2L2

, (1.7.19)

iS(t), E(t)

t

iS(t) � A cos (vt — f)

E(t) � E0 cos vt

Figure 1.7.4: The response of an RL circuit to the driving term E(t) = E0 cosωt .
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iS(t)

i(t) � iS(t) � iT(t)

i(t), iS(t)

t

Figure 1.7.5: The transient part of the solution for an RL circuit dies out as t increases.

where we have substituted for a = R/L. This is illustrated in Figure 1.7.4. The general
picture that we have, therefore, is that the transient part of the solution affects i(t) for a
short period of time, after which the current settles into a steady-state. In the case when
the driving EMF has the form E(t) = E0 cosωt , the steady-state is a phase shift of
this driving EMF with an amplitude given in Equation (1.7.19). This general behavior is
illustrated in Figure 1.7.5. �

Our next example illustrates the procedure for solving the differential equation
(1.7.16) governing the behavior of an RC circuit.

Example 1.7.3 Consider the RC circuit in which R = 0.5�, C = 0.1 F, and E0 = 20 V. Given that the
capacitor has zero initial charge, determine the current in the circuit after 0.25 seconds.

Solution: In this case we first solve Equation (1.7.16) for q(t) and then determine
the current in the circuit by differentiating the result. Substituting for R, C and E into
Equation (1.7.16) yields

dq

dt
+ 20q = 40,

which has general solution

q(t) = 2+ ce−20t ,

where c is an integration constant. Imposing the initial condition q(0) = 0 yields c = −2,
so that

q(t) = 2(1− e−20t ).

Differentiating this expression for q gives the current in the circuit

i(t) = dq

dt
= 40e−20t .

Consequently,

i(0.25) = 40e−5 ≈ 0.27 A. �
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Exercises for 1.7

Key Terms
Mixing problem, Concentration, Electric circuit, Kirchoff’s
second law, Resistor, Capacitor, Inductor, Electromotive
force (EMF), RL circuit, RC circuit, RLC circuit, Direct
current, Alternating current, Transient solution, Steady-state
solution, Phase, Amplitude.

Skills

• Be able to use information about a mixing problem to
provide the correct mathematical formulation of the
problem.

• Be able to solve mixing problems by deriving and solv-
ing the differential equation (1.7.6) for a specific mix-
ing problem and using initial conditions.

• Know the relationship between the charge and the cur-
rent in an electric circuit.

• Be familiar with the basic components of an electric
circuit, such as electromotive force, resistors, capaci-
tors, and inductors.

• Be able to write down and solve the differential equa-
tion for the current in an RL circuit and for the charge
in an RC circuit, for either a direct current or an alter-
nating current.

• Be able to identify the transient and steady-state com-
ponents of current in an electric circuit with an alter-
nating current.

• Be able to put the steady-state component of the cur-
rent in an RL circuit in phase-amplitude form, and
identify the phase shift and the amplitude.

True-False Review
For Questions 1–8, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. The amount of chemical A(t) in a tank at time t is ob-
tained by multiplying the concentration of chemical
c(t) in the tank at time t by the volume of the solution,
V (t), at time t .

2. If r1 and r2 denote the rates at which fluid is flowing
into a tank and out of the tank, respectively, then the
rate of change of the volume of the tank is r2 − r1.

3. For the mixing problems described in this section, we
assume that the concentration of the chemical entering
the tank is independent of time.

4. For the mixing problems described in this section, we
assume that the concentration of the chemical leaving
the tank is independent of time.

5. Kirchoff’s second law states the sum of the voltage
drops around a closed circuit is independent of time.

6. The larger the resistance in a resistor, the greater the
voltage drop between the ends of the resistor.

7. Given an alternating current in an RL circuit, the tran-
sient part of the current decays to zero with time, while
the steady-state part of the current oscillates with the
same frequency as the applied EMF.

8. The higher the frequency of an applied EMF in an
RL circuit, the lower the amplitude of the steady-state
current.

Problems
1. A container initially contains 10 L of water in which

there is 20 g of salt dissolved. A solution containing
4 g/L of salt is pumped into the container at a rate
of 2 L/min, and the well-stirred mixture runs out at a
rate of 1 L/min. How much salt is in the tank after 40
minutes?

2. A tank initially contains 600 L of solution in which
there is dissolved 1500 g of chemical. A solution con-
taining 5 g/L of the chemical flows into the tank at a
rate of 6 L/min, and the well-stirred mixture flows out
at a rate of 3 L/min. Determine the concentration of
chemical in the tank after one hour.

3. A tank whose volume is 40 L initially contains 20 L of
water. A solution containing 10 g/L of salt is pumped
into the tank at a rate of 4 L/min, and the well-stirred
mixture flows out at a rate of 2 L/min. How much salt
is in the tank just before the solution overflows?

4. A tank whose volume is 200 L is initially half full of
a solution that contains 100 g of chemical. A solution
containing 0.5 g/L of the same chemical flows into the
tank at a rate of 6 L/min, and the well-stirred mixture
flows out at a rate of 4 L/min. Determine the concen-
tration of chemical in the tank just before the solution
overflows.



“main”
2007/2/16
page 66

�

�

�

�

�

�

�

�

66 CHAPTER 1 First-Order Differential Equations

5. A tank initially contains 10 L of a salt solution. Water
flows into the tank at a rate of 3 L/min, and the well-
stirred mixture flows out at a rate of 2 L/min. After 5
min, the concentration of salt in the tank is 0.2 g/L.
Find:

(a) The amount of salt in the tank initially.

(b) The volume of solution in the tank when the con-
centration of salt is 0.1 g/L.

6. A tank initially contains 20 L of water. A solution
containing 1 g/L of chemical flows into the tank at a
rate of 3 L/min, and the mixture flows out at a rate of
2 L/min.

(a) Set up and solve the initial-value problem for
A(t), the amount of chemical in the tank at time
t .

(b) When does the concentration of chemical in the
tank reach 0.5 g/L?

7. A tank initially containsw liters of a solution in which
is dissolvedA0 grams of chemical. A solution contain-
ing k g/L of this chemical flows into the tank at a rate
of r L/min, and the mixture flows out at the same rate.

(a) Show that the amount of chemical, A(t), in the
tank at time t is

A(t) = e−(rt)/w[kw(e(rt)/w − 1)+ A0].
(b) Show that as t →∞, the concentration of chem-

ical in the tank approaches k g/L. Is this result
reasonable? Explain.

8. Consider the double mixing problem depicted in Fig-
ure 1.7.6.

r1, c1

r3, c3

r2, c2

A1 A2

Figure 1.7.6: Double mixing problem

(a) Show that the following are differential equations
for A1(t) and A2(t):

dA1

dt
+ r2

(r1 − r2)t + V1
A1 = c1r1,

dA2

dt
+ r3

(r2 − r3)t + V2
A2 = r2A1

(r1 − r2)t + V1
,

where V1 and V2 are constants.

(b) Let r1 = 6 L/min, r2 = 4 L/min, r3 = 3 L/min,
and c1 = 0.5 g/L. If the first tank initially holds
40 L of water in which 4 grams of chemical is
dissolved, whereas the second tank initially con-
tains 20 g of chemical dissolved in 20 L of water,
determine the amount of chemical in the second
tank after 10 min.

9. Consider the RL circuit in which R = 4 �, L = 0.1
H, and E(t) = 20 V. If no current is flowing initially,
determine the current in the circuit for t ≥ 0.

10. Consider the RC circuit which has R = 5 �, C = 1
50

F, and E(t) = 100 V. If the capacitor is uncharged
initially, determine the current in the circuit for t ≥ 0.

11. An RL circuit has EMF E(t) = 10 sin 4t V. If R =
2�,L = 2

3 H, and there is no current flowing initially,
determine the current for t ≥ 0.

12. Consider the RC circuit with R = 2�, C = 1
8 F,

and E(t) = 10 cos 3t V. If q(0) = 1 C, determine the
current in the circuit for t ≥ 0.

13. Consider the general RC circuit with E(t) = 0. Sup-
pose that q(0) = 5 C. Determine the charge on the
capacitor for t > 0. What happens as t →∞? Is this
reasonable? Explain.

14. Determine the current in an RC circuit if the capac-
itor has zero charge initially and the driving EMF is
E = E0, whereE0 is a constant. Make a sketch show-
ing the change in the charge q(t) on the capacitor with
time and show that q(t) approaches a constant value
as t →∞. What happens to the current in the circuit
as t →∞?

15. Determine the current flowing in an RL circuit if the
applied EMF isE(t) = E0 sinωt , whereE0 andω are
constants. Identify the transient part of the solution and
the steady-state solution.

16. Determine the current flowing in an RL circuit if the
applied EMF is constant and the initial current is zero.

17. Determine the current flowing in an RC circuit if the
capacitor is initially uncharged and the driving EMF
is given by E(t) = E0e

−at , where E0 and a are
constants.
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18. Consider the special case of the RLC circuit in which
the resistance is negligible and the driving EMF is
zero. The differential equation governing the charge
on the capacitor in this case is

d2q

dt2
+ 1

LC
q = 0.

If the capacitor has an initial charge of q0 coulombs,

and no current is flowing initially, determine the charge
on the capacitor for t > 0, and the corresponding
current in the circuit. [Hint: Let u = dq/dt and
use the chain rule to show that this implies du/dt =
u(du/dq).]

19. Repeat the previous problem for the case in which the
driving EMF is E(t) = E0, a constant.

1.8 Change of Variables

So far we have introduced techniques for solving separable and first-order linear dif-
ferential equations. Clearly, most first-order differential equations are not of these two
types. In this section, we consider two further types of differential equations that can be
solved by using a change of variables to reduce them to one of the types we know how
to solve. The key point to grasp, however, is not the specific changes of variables that
we discuss, but the general idea of changing variables in a differential equation. Further
examples are considered in the exercises. We first require a preliminary definition.

DEFINITION 1.8.1

A function f (x, y) is said to be homogeneous of degree zero7 if

f (tx, ty) = f (x, y)
for all positive values of t for which (tx, ty) is in the domain of f .

Remark Equivalently, we can say that f is homogeneous of degree zero if it is
invariant under a rescaling of the variables x and y.

The simplest nonconstant functions that are homogeneous of degree zero are
f (x, y) = y/x, and f (x, y) = x/y.

Example 1.8.2 If f (x, y) = x2 − y2

2xy + y2
, then

f (tx, ty) = t2(x2 − y2)

t2(2xy + y2)
= f (x, y),

so that f is homogeneous of degree zero. �
In the previous example, if we factor anx2 term from the numerator and denominator,

then the function f can be written in the form

f (x, y) = x2[1− (y/x)2]
x2[2(y/x)+ (y/x)2] .

That is,

f (x, y) = 1− (y/x)2
2(y/x)+ (y/x)2 .

7
More generally, f (x, y) is said to be homogeneous of degree m if f (tx, ty) = tmf (x, y).


