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18. Consider the special case of the RLC circuit in which
the resistance is negligible and the driving EMF is
zero. The differential equation governing the charge
on the capacitor in this case is

d2q

dt2
+ 1

LC
q = 0.

If the capacitor has an initial charge of q0 coulombs,

and no current is flowing initially, determine the charge
on the capacitor for t > 0, and the corresponding
current in the circuit. [Hint: Let u = dq/dt and
use the chain rule to show that this implies du/dt =
u(du/dq).]

19. Repeat the previous problem for the case in which the
driving EMF is E(t) = E0, a constant.

1.8 Change of Variables

So far we have introduced techniques for solving separable and first-order linear dif-
ferential equations. Clearly, most first-order differential equations are not of these two
types. In this section, we consider two further types of differential equations that can be
solved by using a change of variables to reduce them to one of the types we know how
to solve. The key point to grasp, however, is not the specific changes of variables that
we discuss, but the general idea of changing variables in a differential equation. Further
examples are considered in the exercises. We first require a preliminary definition.

DEFINITION 1.8.1

A function f (x, y) is said to be homogeneous of degree zero7 if

f (tx, ty) = f (x, y)
for all positive values of t for which (tx, ty) is in the domain of f .

Remark Equivalently, we can say that f is homogeneous of degree zero if it is
invariant under a rescaling of the variables x and y.

The simplest nonconstant functions that are homogeneous of degree zero are
f (x, y) = y/x, and f (x, y) = x/y.

Example 1.8.2 If f (x, y) = x2 − y2

2xy + y2
, then

f (tx, ty) = t2(x2 − y2)

t2(2xy + y2)
= f (x, y),

so that f is homogeneous of degree zero. �
In the previous example, if we factor anx2 term from the numerator and denominator,

then the function f can be written in the form

f (x, y) = x2[1− (y/x)2]
x2[2(y/x)+ (y/x)2] .

That is,

f (x, y) = 1− (y/x)2
2(y/x)+ (y/x)2 .

7
More generally, f (x, y) is said to be homogeneous of degree m if f (tx, ty) = tmf (x, y).
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68 CHAPTER 1 First-Order Differential Equations

Thus f can be considered to depend on the single variable V = y/x. The following
theorem establishes that this is a basic property of all functions that are homogeneous of
degree zero.

Theorem 1.8.3 A function f (x, y) is homogeneous of degree zero if and only if it depends on y/x only.

Proof Suppose that f is homogeneous of degree zero. We must consider two cases
separately.

(a) If x > 0, we can take t = 1/x in Definition 1.8.1 to obtain

f (x, y) = f (1, y/x),
which is a function of V = y/x only.

(b) If x < 0, then we can take t = −1/x in Definition 1.8.1. In this case we obtain

f (x, y) = f (−1,−y/x),
which once more depends on y/x only.

Conversely, suppose that f (x, y) depends only on y/x. If we replace x by tx and y
by ty, then f is unaltered, since y/x = (ty)/(tx), and hence is homogeneous of degree
zero.

Remark Do not memorize the formulas in the preceding theorem. Just remember that
a function f (x, y) that is homogeneous of degree zero depends only on the combination
y/x and hence can be considered as a function of a single variable, say, V , where
V = y/x.

We now consider solving differential equations that satisfy the following definition.

DEFINITION 1.8.4

If f (x, y) is homogeneous of degree zero, then the differential equation

dy

dx
= f (x, y)

is called a homogeneous first-order differential equation.

In general, if

dy

dx
= f (x, y)

is a homogeneous first-order differential equation, then we cannot solve it directly. How-
ever, our preceding discussion implies that such a differential equation can be written in
the equivalent form

dy

dx
= F(y/x), (1.8.1)

for an appropriate function F . This suggests that, instead of using the variables x and y,
we should use the variables x and V , where V = y/x, or equivalently,

y = xV (x). (1.8.2)
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Substitution of (1.8.2) into the right-hand side of Equation (1.8.1) has the effect of
reducing it to a function of V only. We must also determine how the derivative term
dy/dx transforms. Differentiating (1.8.2) with respect to x using the product rule yields
the following relationship between dy/dx and dV/dx:

dy

dx
= x dV

dx
+ V.

Substituting into Equation (1.8.1), we therefore obtain

x
dV

dx
+ V = F(V ),

or equivalently,

x
dV

dx
= F(V )− V.

The variables can now be separated to yield

1

F(V )− V dV = 1

x
dx,

which can be solved directly by integration. We have therefore established the next
theorem.

Theorem 1.8.5 The change of variables y = xV (x) reduces a homogeneous first-order differential
equation dy/dx = f (x, y) to the separable equation

1

F(V )− V dV = 1

x
dx.

Remark The separable equation that results in the previous technique can be inte-
grated to obtain a relationship between V and x. We then obtain the solution to the given
differential equation by substituting y/x for V in this relationship.

Example 1.8.6 Find the general solution to

dy

dx
= 4x + y
x − 4y

. (1.8.3)

Solution: The function on the right-hand side of Equation (1.8.3) is homogeneous of
degree zero, so that we have a first-order homogeneous differential equation. Substituting
y = xV into the equation yields

d

dx
(xV ) = 4+ V

1− 4V
.

That is,

x
dV

dx
+ V = 4+ V

1− 4V
,
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70 CHAPTER 1 First-Order Differential Equations

or equivalently,

x
dV

dx
= 4(1+ V 2)

1− 4V
.

Separating the variables gives

1− 4V

4(1+ V 2)
dV = 1

x
dx.

We write this as [
1

4(1+ V 2)
− V

1+ V 2

]
dV = 1

x
dx,

which can be integrated directly to obtain

1

4
arctanV − 1

2
ln (1+ V 2) = ln |x| + c.

Substituting V = y/x and multiplying through by 2 yields

1

2
arctan

(y
x

)
− ln

(
x2 + y2

x2

)
= ln (x2)+ c1,

which simplifies to

1

2
arctan

(y
x

)
− ln (x2 + y2) = c1. (1.8.4)

Although this technically gives the answer, the solution is more easily expressed in terms
of polar coordinates:

x = r cos θ and y = r sin θ ⇐⇒ r =
√
x2 + y2 and θ = arctan

(y
x

)
.

Substituting into Equation (1.8.4) yields

1

2
θ − ln (r2) = c1,

or equivalently,

ln r = 1

4
θ + c2.

Exponentiating both sides of this equation gives

r = c3e
θ/4.

For each value of c3, this is the equation of a logarithmic spiral. The particular spiral
with equation r = 1

2e
θ/4 is shown in Figure 1.8.1.
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Figure 1.8.1: Graph of the logarithmic spiral with polar equation r = 1
2 e
θ/4,

−5π/6 ≤ θ ≤ 22π/6. �

Example 1.8.7 Find the equation of the orthogonal trajectories to the family

x2 + y2 − 2cx = 0. (1.8.5)

(Completing the square in x, we obtain (x− c)2+ y2 = c2, which represents the family
of circles centered at (c, 0), with radius c.)

Solution: First we need an expression for the slope of the given family at the point
(x, y). Differentiating Equation (1.8.5) implicitly with respect to x yields

2x + 2y
dy

dx
− 2c = 0,

which simplifies to

dy

dx
= c − x

y
. (1.8.6)

This is not the differential equation of the given family, since it still contains the constant
c and hence is dependent on the individual curves in the family. Therefore, we must
eliminate c to obtain an expression for the slope of the family that is independent of any
particular curve in the family. From Equation (1.8.5) we have

c = x2 + y2

2x
.

Substituting this expression for c into Equation (1.8.6) and simplifying gives

dy

dx
= y2 − x2

2xy
.

Therefore, the differential equation for the family of orthogonal trajectories is

dy

dx
= − 2xy

y2 − x2
. (1.8.7)

This differential equation is first-order homogeneous. Substituting y = xV (x) into
Equation (1.8.7) yields

d

dx
(xV ) = 2V

1− V 2
,
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so that

x
dV

dx
+ V = 2V

1− V 2
.

Hence

x
dV

dx
= V + V 3

1− V 2
,

or in separated form,

1− V 2

V (1+ V 2)
dV = 1

x
dx.

Decomposing the left-hand side into partial fractions yields

(
1

V
− 2V

1+ V 2

)
dV = 1

x
dx,

which can be integrated directly to obtain

ln |V | − ln (1+ V 2) = ln |x| + c,

or equivalently,

ln

( |V |
1+ V 2

)
= ln |x| + c.

Exponentiating both sides and redefining the constant yields

V

1+ V 2
= c1x.

Substituting back for V = y/x, we obtain

xy

x2 + y2
= c1x.

That is,

x2 + y2 = c2y,

where c2 = 1/c1. Completing the square in y yields

x2 + (y − k)2 = k2, (1.8.8)

where k = c2/2. Equation (1.8.8) is the equation of the family of orthogonal trajectories.
This is the family of circles centered at (0, k) with radius k (circles along the y-axis).
(See Figure 1.8.2.)
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y

x

x2 � (y � k)2 � k2

(x � c)2 � y2 � c2

Figure 1.8.2: The family (x − c)2 + y2 = c2 and its orthogonal trajectories
x2 + (y − k)2 = k2.

�

Bernoulli Equations
We now consider a special type of nonlinear differential equation that can be reduced to
a linear equation by a change of variables.

DEFINITION 1.8.8

A differential equation that can be written in the form

dy

dx
+ p(x)y = q(x)yn, (1.8.9)

where n is a real constant, is called a Bernoulli equation.

If n = 0 or n = 1, Equation (1.8.9) is linear, but otherwise it is nonlinear. We can
reduce it to a linear equation as follows. We first divide Equation (1.8.9) by yn to obtain

y−n dy
dx
+ y1−np(x) = q(x). (1.8.10)

We now make the change of variables

u(x) = y1−n, (1.8.11)

which implies that

du

dx
= (1− n)y−n dy

dx
.

That is,

y−n dy
dx
= 1

1− n
du

dx
.

Substituting into Equation (1.8.10) for y1−n and y−ndy/dx yields the linear differential
equation

1

1− n
du

dx
+ p(x)u = q(x),
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or in standard form,

du

dx
+ (1− n)p(x)u = (1− n)q(x). (1.8.12)

The linear equation (1.8.12) can now be solved for u as a function of x. The solution to
the original equation is then obtained from (1.8.11).

Example 1.8.9 Solve

dy

dx
+ 3

x
y = 12y2/3

√
1+ x2

, x > 0.

Solution: The differential equation is a Bernoulli equation. Dividing both sides of
the differential equation by y2/3 yields

y−2/3 dy

dx
+ 3

x
y1/3 = 12√

1+ x2
. (1.8.13)

We make the change of variables

u = y1/3, (1.8.14)

which implies that

du

dx
= 1

3
y−2/3 dy

dx
.

Substituting into Equation (1.8.13) yields

3
du

dx
+ 3

x
u = 12√

1+ x2
,

or in standard form,

du

dx
+ 1

x
u = 4√

1+ x2
. (1.8.15)

An integrating factor for this linear equation is

I (x) = e
∫
(1/x) dx = eln x = x,

so that Equation (1.8.15) can be written as

d

dx
(xu) = 4x√

1+ x2
.

Integrating, we obtain

u(x) = x−1
(

4
√

1+ x2 + c
)
,

and so, from (1.8.14), the solution to the original differential equation is

y1/3 = x−1
(

4
√

1+ x2 + c
)
. �
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Exercises for 1.8

Key Terms
Homogeneous of degree zero, Homogeneous first-order dif-
ferential equation, Bernoulli equation.

Skills

• Be able to recognize whether or not a function f (x, y)
is homogeneous of degree zero, and whether or not
a given differential equation is a homogeneous first-
order differential equation.

• Know how to change the variables in a homogeneous
first-order differential equation in order to get a dif-
ferential equation that is separable and thus can be
solved.

• Be able to recognize whether or not a given first-order
differential equation is a Bernoulli equation.

• Know how to change the variables in a Bernoulli equa-
tion in order to get a differential equation that is first-
order linear and thus can be solved.

• Be able to make other changes of variables to differ-
ential equations in order to turn them into differential
equations that can be solved by methods from earlier
in this chapter.

True-False Review
For Questions 1–9, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. The function

f (x, y) = 2xy − x2

2xy + y2

is homogeneous of degree zero.

2. The function

f (x, y) = y2

x + y2

is homogeneous of degree zero.

3. The differential equation

dy

dx
= 1+ xy2

1+ x2y

is a first-order homogeneous differential equation.

4. The differential equation

dy

dx
= x2y2

x4 + y4

is a first-order homogeneous differential equation.

5. The change of variables y = xV (x) always turns a
first-order homogeneous differential equation into a
separable differential equation for V as a function of
x.

6. The change of variables u = y−n always turns a
Bernoulli differential equation into a first-order linear
differential equation for u as a function of x.

7. The differential equation

dy

dx
= √xy +√xy

is a Bernoulli differential equation.

8. The differential equation

dy

dx
− exyy = 5x

√
y

is a Bernoulli differential equation.

9. The differential equation

dy

dx
+ xy = x2y2/3

is a Bernoulli differential equation.

Problems
For Problems 1–8, determine whether the given function is
homogeneous of degree zero. Rewrite those that are as func-
tions of the single variable V = y/x.

1. f (x, y) = x2 − y2

xy
.

2. f (x, y) = x − y.

3. f (x, y) = x sin(x/y)− y cos(y/x)

y
.

4. f (x, y) =
√
x2 + y2

x − y , x > 0.
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5. f (x, y) = y

x − 1
.

6. f (x, y) = x − 3

y
+ 5y + 9

3y
.

7. f (x, y) =
√
x2 + y2

x
, x < 0.

8. f (x, y) =
√
x2 + 4y2 − x + y

x + 3y
, x, y �= 0.

For Problems 9–22, solve the given differential equation.

9. (3x − 2y)
dy

dx
= 3y.

10. y′ = (x + y)2
2x2

.

11. sin
(y
x

)
(xy′ − y) = x cos

(y
x

)
.

12. xy′ = √16x2 − y2 + y, x > 0.

13. xy′ − y = √9x2 + y2, tx > 0.

14. y(x2 − y2)dx − x(x2 + y2) dy = 0.

15. xy′ + y ln x = y ln y.

16.
dy

dx
= y2 + 2xy − 2x2

x2 − xy + y2
.

17. 2xy dy − (x2e−y2/x2 + 2y2) dx = 0.

18. x2 dy

dx
= y2 + 3xy + x2.

19. yy′ = √x2 + y2 − x, x > 0.

20. 2x(y + 2x)y′ = y(4x − y).

21. x
dy

dx
= x tan(y/x)+ y.

22.
dy

dx
= x

√
x2 + y2 + y2

xy
, x > 0.

23. Solve the differential equation in Example 1.8.6 by
first transforming it into polar coordinates. [Hint:
Write the differential equation in differential form and
then express dx and dy in terms of r and θ .]

For Problems 24–26, solve the given initial-value problem.

24.
dy

dx
= 2(2y − x)

x + y , y(1) = 2.

25.
dy

dx
= 2x − y
x + 4y

, y(1) = 1.

26.
dy

dx
= y −√x2 + y2

x
, y(3) = 4.

27. Find all solutions to

x
dy

dx
− y =

√
4x2 − y2, x > 0.

28. (a) Show that the general solution to the differential
equation

dy

dx
= x + ay
ax − y

can be written in polar form as r = keaθ .

(b) For the particular case when a = 1/2, deter-
mine the solution satisfying the initial condition
y(1) = 1, and find the maximum x-interval on
which this solution is valid. [Hint: When does
the solution curve have a vertical tangent?]

(c) � On the same set of axes, sketch the spiral cor-
responding to your solution in (b), and the line
y = x/2. Thus verify the x-interval obtained in
(b) with the graph.

For Problems 29–30, determine the orthogonal trajectories
to the given family of curves. Sketch some curves from each
family.

29. x2 + y2 = 2cy.

30. (x − c)2 + (y − c)2 = 2c2.

31. Fix a real number m. Let S1 denote the family of cir-
cles, centered on the line y = mx, each member of
which passes through the origin.

(a) Show that the equation of S1 can be written in the
form

(x − a)2 + (y −ma)2 = a2(m2 + 1),

where a is a constant that labels particular mem-
bers of the family.

(b) Determine the equation of the family of orthog-
onal trajectories to S1, and show that it con-
sists of the family of circles centered on the line
x = −my that pass through the origin.

(c) � Sketch some curves from both families when
m = √3/3.
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Let F1 and F2 be two families of curves with the prop-
erty that whenever a curve from the family F1 inter-
sects one from the family F2, it does so at an angle
α �= π/2. If we know the equation of F2, then it can
be shown (see Problem 26 in Section 1.1) that the dif-
ferential equation for determining F1 is

dy

dx
= m2 − tan α

1+m2 tan α
, (1.8.16)

where m2 denotes the slope of the family F2 at the
point (x, y).

For Problems 32–34, use Equation (1.8.16) to determine the
equation of the family of curves that cuts the given family at
an angle α = π/4.

32. x2 + y2 = c.
33. y = cx6.

34. x2 + y2 = 2cx.

35. (a) Use Equation (1.8.16) to find the equation of the
family of curves that intersects the family of hy-
perbolas y = c/x at an angle α = α0.

(b) � When α0 = π/4, sketch several curves from
each family.

36. (a) Use Equation (1.8.16) to show that the family of
curves that intersects the family of concentric cir-
cles x2 + y2 = c at an angle α = tan−1m has
polar equation r = kemθ .

(b) � When α = π/6, sketch several curves from
each family.

For Problems 37–49, solve the given differential equation.

37. y′ − x−1y = 4x2y−1 cos x, x > 0.

38.
dy

dx
+ 1

2
(tan x)y = 2y3 sin x.

39.
dy

dx
− 3

2x
y = 6y1/3x2 ln x.

40. y′ + 2x−1y = 6
√

1+ x2√y, x > 0.

41. y′ + 2x−1y = 6y2x4.

42. 2x(y′ + y3x2)+ y = 0.

43. (x− a)(x− b)(y′ −√y) = 2(b− a)y, where a, b are
constants.

44. y′ + 6x−1y = 3x−1y2/3 cos x, x > 0.

45. y′ + 4xy = 4x3y1/2.

46.
dy

dx
− 1

2x ln x
y = 2xy3.

47.
dy

dx
− 1

(π − 1)x
y = 3

1− π xy
π .

48. 2y′ + y cot x = 8y−1 cos3 x.

49. (1−√3)y′ + y sec x = y
√

3 sec x.

For Problems 50–51, solve the given initial-value problem.

50.
dy

dx
+ 2x

1+ x2
y = xy2, y(0) = 1.

51. y′ + y cot x = y3 sin3 x, y(π/2) = 1.

52. Consider the differential equation

y′ = F(ax + by + c), (1.8.17)

where a, b �= 0, and c are constants. Show that the
change of variables from x, y to x, V , where

V = ax + by + c
reduces Equation (1.8.17) to the separable form

1

bF(V )+ a dV = dx.

For Problems 53–55, use the result from the previous prob-
lem to solve the given differential equation. For Problem 53,
impose the given initial condition as well.

53. y′ = (9x − y)2, y(0) = 0.

54. y′ = (4x + y + 2)2.

55. y′ = sin2(3x − 3y + 1).

56. Show that the change of variables V = xy transforms
the differential equation

dy

dx
= y

x
F(xy)

into the separable differential equation

1

V [F(V )+ 1]
dV

dx
= 1

x
.

57. Use the result from the previous problem to solve

dy

dx
= y

x
[ln (xy)− 1].
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58. Consider the differential equation

dy

dx
= x + 2y − 1

2x − y + 3
. (1.8.18)

(a) Show that the change of variables defined by

x = u− 1, y = v + 1

transforms Equation (1.8.18) into the homoge-
neous equation

dv

du
= u+ 2v

2u− v . (1.8.19)

(b) Find the general solution to Equation (1.8.19),
and hence solve Equation (1.8.18).

59. A differential equation of the form

y′ + p(x)y + q(x)y2 = r(x) (1.8.20)

is called a Riccati equation.

(a) If y = Y (x) is a known solution to Equa-
tion (1.8.20), show that the substitution

y = Y (x)+ v−1(x)

reduces it to the linear equation

v′ − [p(x)+ 2Y (x)q(x)]v = q(x).

(b) Find the general solution to the Riccati equation

x2y′ − xy − x2y2 = 1, x > 0,

given that y = −x−1 is a solution.

60. Consider the Riccati equation

y′ + 2x−1y − y2 = −2x−2, x > 0. (1.8.21)

(a) Determine the values of the constants a and r
such that y(x) = axr is a solution to Equation
(1.8.21).

(b) Use the result from part (a) of the previous prob-
lem to determine the general solution to Equation
(1.8.21).

61. (a) Show that the change of variables y = x−1 + w
transforms the Riccati differential equation

y′ + 7x−1y − 3y2 = 3x−2 (1.8.22)

into the Bernoulli equation

w′ + x−1w = 3w2. (1.8.23)

(b) Solve Equation (1.8.23), and hence determine the
general solution to (1.8.22).

62. Consider the differential equation

y−1y′ + p(x) ln y = q(x), (1.8.24)

where p(x) and q(x) are continuous functions on
some interval (a, b). Show that the change of vari-
ables u = ln y reduces Equation (1.8.24) to the linear
differential equation

u′ + p(x)u = q(x),
and hence show that the general solution to Equa-
tion (1.8.24) is

y(x) = exp

{
I−1

[∫
I (x)q(x) dx + c

]}
,

where

I = e
∫
p(x)dx (1.8.25)

and c is an arbitrary constant.

63. Use the technique derived in the previous problem to
solve the initial-value problem

y−1y′ − 2x−1 ln y = x−1(1− 2 ln x),

y(1) = e.
64. Consider the differential equation

f ′(y) dy
dx
+ p(x)f (y) = q(x), (1.8.26)

where p and q are continuous functions on some in-
terval (a, b), and f is an invertible function. Show that
Equation (1.8.26) can be written as

du

dx
+ p(x)u = q(x),
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where u = f (y), and hence show that the general
solution to Equation (1.8.26) is

y(x) = f−1
{
I−1

[∫
I (x)q(x) dx + c

]}
,

where I is given in (1.8.25), f−1 is the inverse of f ,

and c is an arbitrary constant.

65. Solve

sec2 y
dy

dx
+ 1

2
√

1+ x tan y = 1

2
√

1+ x .

1.9 Exact Differential Equations

For the next technique it is best to consider first-order differential equations written in
differential form

M(x, y) dx +N(x, y) dy = 0, (1.9.1)

where M and N are given functions, assumed to be sufficiently smooth.8 The method
that we will consider is based on the idea of a differential. Recall from a previous calculus
course that if φ = φ(x, y) is a function of two variables, x and y, then the differential
of φ, denoted dφ, is defined by

dφ = ∂φ

∂x
dx + ∂φ

∂y
dy. (1.9.2)

Example 1.9.1 Solve

2x sin y dx + x2 cos y dy = 0. (1.9.3)

Solution: This equation is separable, but we will use a different technique to solve
it. By inspection, we notice that

2x sin y dx + x2 cos y dy = d(x2 sin y).

Consequently, Equation (1.9.3) can be written as d(x2 sin y) = 0, which implies that
x2 sin y is constant, hence the general solution to Equation (1.9.3) is

sin y = c

x2
,

where c is an arbitrary constant. �
In the foregoing example we were able to write the given differential equation in the

form dφ(x, y) = 0, and hence obtain its solution. However, we cannot always do this.
Indeed we see by comparing Equation (1.9.1) with (1.9.2) that the differential equation

M(x, y) dx +N(x, y) dy = 0

can be written as dφ = 0 if and only if

M = ∂φ

∂x
and N = ∂φ

∂y

for some function φ. This motivates the following definition:

8This means we assume that the functionsM andN have continuous derivatives of sufficiently high order.


