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1.9 Exact Differential Equations 79

where u = f (y), and hence show that the general
solution to Equation (1.8.26) is

y(x) = f−1
{
I−1

[∫
I (x)q(x) dx + c

]}
,

where I is given in (1.8.25), f−1 is the inverse of f ,

and c is an arbitrary constant.

65. Solve

sec2 y
dy

dx
+ 1

2
√

1+ x tan y = 1

2
√

1+ x .

1.9 Exact Differential Equations

For the next technique it is best to consider first-order differential equations written in
differential form

M(x, y) dx +N(x, y) dy = 0, (1.9.1)

where M and N are given functions, assumed to be sufficiently smooth.8 The method
that we will consider is based on the idea of a differential. Recall from a previous calculus
course that if φ = φ(x, y) is a function of two variables, x and y, then the differential
of φ, denoted dφ, is defined by

dφ = ∂φ

∂x
dx + ∂φ

∂y
dy. (1.9.2)

Example 1.9.1 Solve

2x sin y dx + x2 cos y dy = 0. (1.9.3)

Solution: This equation is separable, but we will use a different technique to solve
it. By inspection, we notice that

2x sin y dx + x2 cos y dy = d(x2 sin y).

Consequently, Equation (1.9.3) can be written as d(x2 sin y) = 0, which implies that
x2 sin y is constant, hence the general solution to Equation (1.9.3) is

sin y = c

x2
,

where c is an arbitrary constant. �
In the foregoing example we were able to write the given differential equation in the

form dφ(x, y) = 0, and hence obtain its solution. However, we cannot always do this.
Indeed we see by comparing Equation (1.9.1) with (1.9.2) that the differential equation

M(x, y) dx +N(x, y) dy = 0

can be written as dφ = 0 if and only if

M = ∂φ

∂x
and N = ∂φ

∂y

for some function φ. This motivates the following definition:

8This means we assume that the functionsM andN have continuous derivatives of sufficiently high order.
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DEFINITION 1.9.2

The differential equation

M(x, y) dx +N(x, y) dy = 0

is said to be exact in a regionR of the xy-plane if there exists a function φ(x, y) such
that

∂φ

∂x
= M, ∂φ

∂y
= N, (1.9.4)

for all (x, y) in R.

Any function φ satisfying (1.9.4) is called a potential function for the differential
equation

M(x, y) dx +N(x, y) dy = 0.

We emphasize that if such a function exists, then the preceding differential equation can
be written as

dφ = 0.

This is why such a differential equation is called an exact differential equation. From the
previous example, a potential function for the differential equation

2x sin y dx + x2 cos y dy = 0

is

φ(x, y) = x2 sin y.

We now show that if a differential equation is exact and we can find a potential function
φ, its solution can be written down immediately.

Theorem 1.9.3 The general solution to an exact equation

M(x, y) dx +N(x, y) dy = 0

is defined implicitly by

φ(x, y) = c,
where φ satisfies (1.9.4) and c is an arbitrary constant.

Proof We rewrite the differential equation in the form

M(x, y)+N(x, y) dy
dx
= 0.

Since the differential equation is exact, there exists a potential function φ (see (1.9.4))
such that

∂φ

∂x
+ ∂φ
∂y

dy

dx
= 0.

But this implies that ∂φ/∂x = 0. Consequently, φ(x, y) is a function of y only. By a
similar argument, which we leave to the reader, we can deduce that φ(x, y) is a function
of x only. We conclude therefore that φ(x, y) = c, where c is a constant.
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1.9 Exact Differential Equations 81

Remarks

1. The potential function φ is a function of two variables x and y, and we interpret the
relationship φ(x, y) = c as defining y implicitly as a function of x. The preceding
theorem states that this relationship defines the general solution to the differential
equation for which φ is a potential function.

2. Geometrically, Theorem 1.9.3 says that the solution curves of an exact differential
equation are the family of curves φ(x, y) = k, where k is a constant. These are
called the level curves of the function φ(x, y).

The following two questions now arise:

1. How can we tell whether a given differential equation is exact?

2. If we have an exact equation, how do we find a potential function?

The answers are given in the next theorem and its proof.

Theorem 1.9.4 (Test for Exactness) LetM , N , and their first partial derivativesMy and Nx , be contin-
uous in a (simply connected9) region R of the xy-plane. Then the differential equation

M(x, y) dx +N(x, y) dy = 0

is exact for all x, y in R if and only if

∂M

∂y
= ∂N

∂x
. (1.9.5)

Proof We first prove that exactness implies the validity of Equation (1.9.5). If the
differential equation is exact, then by definition there exists a potential function φ(x, y)
such that φx = M and φy = N . Thus, taking partial derivatives, φxy = My and
φyx = Nx . Since My and Nx are continuous in R, it follows that φxy and φyx are
continuous in R. But, from multivariable calculus, this implies that φxy = φyx and
hence that My = Nx .

We now prove the converse. Thus we assume that Equation (1.9.5) holds and must
prove that there exists a potential function φ such that

∂φ

∂x
= M (1.9.6)

and

∂φ

∂y
= N. (1.9.7)

The proof is constructional. That is, we will actually find a potential function φ. We
begin by integrating Equation (1.9.6) with respect to x, holding y fixed (this is a partial
integration) to obtain

φ(x, y) =
∫ x

M(s, y) ds + h(y), (1.9.8)

9Roughly speaking, simply connected means that the interior of any closed curve drawn in the region also
lies in the region. For example, the interior of a circle is a simply connected region, although the region between
two concentric circles is not.
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where h(y) is an arbitrary function of y (this is the integration “constant” that we must
allow to depend on y, since we held y fixed in performing the integration10). We now
show how to determine h(y) so that the function f defined in (1.9.8) also satisfies
Equation (1.9.7). Differentiating (1.9.8) partially with respect to y yields

∂φ

∂y
= ∂

∂y

∫ x

M(s, y) ds + dh
dy
.

In order that φ satisfy Equation (1.9.7) we must choose h(y) to satisfy

∂

∂y

∫ x

M(s, y) ds + dh
dy
= N(x, y).

That is,

dh

dy
= N(x, y)− ∂

∂y

∫ x

M(s, y) ds. (1.9.9)

Since the left-hand side of this expression is a function of y only, we must show, for
consistency, that the right-hand side also depends only on y. Taking the derivative of the
right-hand side with respect to x yields

∂

∂x

(
N − ∂

∂y

∫ x

M(s, y) ds

)
= ∂N

∂x
− ∂2

∂x∂y

∫ x

M(s, y) ds

= ∂N

∂x
− ∂

∂y

(
∂

∂x

∫ x

M(s, y) ds

)
= ∂N

∂x
− ∂M
∂y

.

Thus, using (1.9.5), we have

∂

∂x

(
N − ∂

∂y

∫ x

M(s, y) ds

)
= 0,

so that the right-hand side of Equation (1.9.9) does depend only on y. It follows that
(1.9.9) is a consistent equation, and hence we can integrate both sides with respect to y
to obtain

h(y) =
∫ y

N(x, t) dt −
∫ y ∂

∂t

(∫ x

M(s, t) ds

)
dt.

Finally, substituting into (1.9.8) yields the potential function

φ(x, y) =
∫ x

M(s, y) dx +
∫ y

N(x, t) dt −
∫ y ∂

∂t

(∫ x

M(s, t) ds

)
dt.

Remark There is no need to memorize the final result for φ. For each particular
problem, one can construct an appropriate potential function from first principles. This
is illustrated in Examples 1.9.6 and 1.9.7.

10Throughout the text,
∫ x

f (t) dt means “evaluate the indefinite integral
∫
f (t) dt and replace t with x

in the result.”
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Example 1.9.5 Determine whether the given differential equation is exact.

1. [1+ ln (xy)] dx + (x/y) dy = 0.

2. x2y dx − (xy2 + y3) dy = 0.

Solution:

1. In this case, M = 1+ ln (xy) and N = x/y, so that My = 1/y = Nx . It follows
from the previous theorem that the differential equation is exact.

2. In this case, we have M = x2y, N = −(xy2 + y3), so that My = x2, whereas
Nx = −y2. Since My �= Nx , the differential equation is not exact. �

Example 1.9.6 Find the general solution to 2xey dx + (x2ey + cos y) dy = 0.

Solution: We have

M(x, y) = 2xey, N(x, y) = x2ey + cos y,

so that

My = 2xey = Nx.
Hence the given differential equation is exact, and so there exists a potential function φ
such that (see Definition 1.9.2)

∂φ

∂x
= 2xey, (1.9.10)

∂φ

∂y
= x2ey + cos y. (1.9.11)

Integrating Equation (1.9.10) with respect to x, holding y fixed, yields

φ(x, y) = x2ey + h(y), (1.9.12)

where h is an arbitrary function of y. We now determine h(y) such that (1.9.12) also
satisfies Equation (1.9.11). Taking the derivative of (1.9.12) with respect to y yields

∂φ

∂y
= x2ey + dh

dy
. (1.9.13)

Equations (1.9.11) and (1.9.13) give two expressions for ∂φ/∂y. This allows us to de-
termine h. Subtracting Equation (1.9.11) from Equation (1.9.13) gives the consistency
requirement

dh

dy
= cos y,

which implies, upon integration, that

h(y) = sin y,
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where we have set the integration constant equal to zero without loss of generality, since
we require only one potential function. Substitution into (1.9.12) yields the potential
function

φ(x, y) = x2ey + sin y.

Consequently, the given differential equation can be written as

d(x2ey + sin y) = 0,

and so, from Theorem 1.9.3, the general solution is

x2ey + sin y = c. �

Notice that the solution obtained in the preceding example is an implicit solution.
Owing to the nature of the way in which the potential function for an exact equation is
obtained, this is usually the case.

Example 1.9.7 Find the general solution to[
sin(xy)+ xy cos(xy)+ 2x

]
dx +

[
x2 cos(xy)+ 2y

]
dy = 0.

Solution: We have

M(x, y) = sin(xy)+ xy cos(xy)+ 2x and N(x, y) = x2 cos(xy)+ 2y.

Thus,

My = 2x cos(xy)− x2y sin(xy) = Nx,
and so the differential equation is exact. Hence there exists a potential function φ(x, y)
such that

∂φ

∂x
= sin(xy)+ xy cos(xy)+ 2x, (1.9.14)

∂φ

∂y
= x2 cos(xy)+ 2y. (1.9.15)

In this case, Equation (1.9.15) is the simpler equation, and so we integrate it with respect
to y, holding x fixed, to obtain

φ(x, y) = x sin(xy)+ y2 + g(x), (1.9.16)

where g(x) is an arbitrary function of x. We now determine g(x), and hence φ, from
(1.9.14) and (1.9.16). Differentiating (1.9.16) partially with respect to x yields

∂φ

∂x
= sin(xy)+ xy cos(xy)+ dg

dx
. (1.9.17)

Equations (1.9.14) and (1.9.17) are consistent if and only if

dg

dx
= 2x.

Hence, upon integrating,

g(x) = x2,
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where we have once more set the integration constant to zero without loss of generality,
since we require only one potential function. Substituting into (1.9.16) gives the potential
function

φ(x, y) = x sin xy + x2 + y2.

The original differential equation can therefore be written as

d(x sin xy + x2 + y2) = 0,

and hence the general solution is

x sin xy + x2 + y2 = c. �

Remark At first sight the above procedure appears to be quite complicated. However,
with a little bit of practice, the steps are seen to be, in fact, fairly straightforward. As we
have shown in Theorem 1.9.4, the method works in general, provided one starts with an
exact differential equation.

Integrating Factors
Usually a given differential equation will not be exact. However, sometimes it is possible
to multiply the differential equation by a nonzero function to obtain an exact equation
that can then be solved using the technique we have described in this section. Notice
that the solution to the resulting exact equation will be the same as that of the original
equation, since we multiply by a nonzero function.

DEFINITION 1.9.8

A nonzero function I (x, y) is called an integrating factor for the differential equation
M(x, y)dx +N(x, y)dy = 0 if the differential equation

I (x, y)M(x, y) dx + I (x, y)N(x, y) dy = 0

is exact.

Example 1.9.9 Show that I = x2y is an integrating factor for the differential equation

(3y2 + 5x2y) dx + (3xy + 2x3) dy = 0. (1.9.18)

Solution: Multiplying the given differential equation (which is not exact) by x2y

yields

(3x2y3 + 5x4y2) dx + (3x3y2 + 2x5y) dy = 0. (1.9.19)

Thus,

My = 9x2y2 + 10x4y = Nx,



“main”
2007/2/16
page 86

�

�

�

�

�

�

�

�

86 CHAPTER 1 First-Order Differential Equations

so that the differential equation (1.9.19) is exact, and hence I = x2y is an integrating
factor for Equation (1.9.18). Indeed we leave it as an exercise to verify that (1.9.19) can
be written as

d(x3y3 + x5y2) = 0,

so that the general solution to Equation (1.9.19) (and hence the general solution to
Equation (1.9.18)) is defined implicitly by

x3y3 + x5y2 = c.
That is,

x3y2(y + x2) = c. �

As shown in the next theorem, using the test for exactness, it is straightforward to
determine the conditions that a function I (x, y)must satisfy in order to be an integrating
factor for the differential equation M(x, y) dx +N(x, y) dy = 0.

Theorem 1.9.10 The function I (x, y) is an integrating factor for

M(x, y) dx +N(x, y) dy = 0 (1.9.20)

if and only if it is a solution to the partial differential equation

N
∂I

∂x
−M∂I

∂y
=
(
∂M

∂y
− ∂N
∂x

)
I. (1.9.21)

Proof Multiplying Equation (1.9.20) by I yields

IM dx + IN dy = 0.

This equation is exact if and only if

∂

∂y
(IM) = ∂

∂x
(IN),

that is, if and only if

∂I

∂y
M + I ∂M

∂y
= ∂I

∂x
N + I ∂N

∂x
.

Rearranging the terms in this equation yields Equation (1.9.21).

The preceding theorem is not too useful in general, since it is usually no easier to
solve the partial differential equation (1.9.21) to find I than it is to solve the original
Equation (1.9.20). However, it sometimes happens that an integrating factor exists that
depends only on one variable. We now show that Theorem 1.9.10 can be used to determine
when such an integrating factor exists and also to actually find a corresponding integrating
factor.
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Theorem 1.9.11 Consider the differential equation M(x, y) dx +N(x, y) dy = 0.

1. There exists an integrating factor that is dependent only on x if and only if
(My−Nx)/N = f (x), a function of x only. In such a case, an integrating factor is

I (x) = e
∫
f (x) dx.

2. There exists an integrating factor that is dependent only on y if and only if
(My−Nx)/M = g(y), a function of y only. In such a case, an integrating factor is

I (y) = e−
∫
g(y) dy.

Proof For part 1 of the theorem, we begin by assuming that I = I (x) is an integrating
factor forM(x, y) dx +N(x, y) dy = 0. Then ∂I/∂y = 0, and so, from (1.9.21), I is a
solution to

dI

dx
N = (My −Nx)I.

That is,

1

I

dI

dx
= My −Nx

N
.

Since, by assumption, I is a function of x only, it follows that the left-hand side of this
expression depends only on x and hence also the right-hand side.

Conversely, suppose that (My−Nx)/N = f (x), a function of x only. Then, dividing
(1.9.21) byN , it follows that I is an integrating factor forM(x, y) dx+N(x, y) dy = 0
if and only if it is a solution to

∂I

∂x
− M
N

∂I

∂y
= If (x). (1.9.22)

We must show that this differential equation has a solution I that depends on x only.
We do this by explicitly integrating the differential equation under the assumption that
I = I (x). Indeed, if I = I (x), then Equation (1.9.22) reduces to

dI

dx
= If (x),

which is a separable equation with solution

I (x) = e
∫
f (x) dx

The proof of part 2 is similar, and so we leave it as an exercise (see Problem 30 ).

Example 1.9.12 Solve

(2x − y2) dx + xy dy = 0, x > 0. (1.9.23)

Solution: The equation is not exact (My �= Nx). However,

My −Nx
N

= −2y − y
xy

= −3

x
,
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which is a function of x only. It follows from part 1 of the preceding theorem that an
integrating factor for Equation (1.9.23) is

I (x) = e−
∫
(3/x)dx = e−3 ln x = x−3.

Multiplying Equation (1.9.23) by I yields the exact equation

(2x−2 − x−3y2) dx + x−2y dy = 0. (1.9.24)

(The reader should check that this is exact, although it must be, by the previous theorem.)
We leave it as an exercise to verify that a potential function for Equation (1.9.24) is

φ(x, y) = 1

2
x−2y2 − 2x−1,

and hence the general solution to (1.9.23) is given implicitly by

1

2
x−2y2 − 2x−1 = c,

or equivalently,

y2 − 4x = c1x
2. �

Exercises for 1.9

Key Terms
Exact differential equation, Potential function, Integrating
factor.

Skills

• Be able to determine whether or not a given differential
equation is exact.

• Given the partial derivatives ∂φ/∂x and ∂φ/∂y of a po-
tential function φ(x, y), be able to determine φ(x, y).

• Be able to find the general solution to an exact differ-
ential equation.

• When circumstances allow, be able to use an integrat-
ing factor to convert a given differential equation into
an exact differential equation with the same solution
set.

True-False Review
For Questions 1–9, decide if the given statement is true or
false, and give a brief justification for your answer. If true,

you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. The differential equationM(x, y) dx+N(x, y) dy =
0 is exact in a simply connected region R if Mx and
Ny are continuous partial derivatives with Mx = Ny .

2. The solution to an exact differential equation is called
a potential function.

3. If M(x) and N(y) are continuous functions, then the
differential equationM(x) dx+N(y) dy = 0 is exact.

4. If (My−Nx)/N(x, y) is a function of x only, then the
differential equation M(x, y) dx + N(x, y) dy = 0
becomes exact when it is multiplied through by

I (x) = exp

(∫
(My −Nx)/N(x, y) dx

)
.

5. There is a unique potential function for an exact dif-
ferential equation M(x, y) dx +N(x, y) dy = 0.
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6. The differential equation

(2ye2x − sin y) dx + (e2x − x cos y) dy = 0

is exact.

7. The differential equation

−2xy

(x2 + y)2 dx +
x2

(x2 + y)2 dy = 0

is exact.

8. The differential equation

(y2 + cos x) dx + 2xy2 dy = 0

is exact.

9. The differential equation

(ex sin y sin y) dx + (ex sin y cos y) dy = 0

is exact.

Problems
For Problems 1–3, determine whether the given differential
equation is exact.

1. (y + 3x2) dx + xdy = 0.

2. [cos(xy)− xy sin(xy)] dx − x2 sin(xy) dy = 0.

3. yexy dx + (2y − xexy) dy = 0.

For Problems 4–12, solve the given differential equation.

4. 2xy dx + (x2 + 1) dy = 0.

5. (y2 + cos x) dx + (2xy + sin y) dy = 0.

6. x−1(xy − 1) dx + y−1(xy + 1) dy = 0.

7. (4e2x + 2xy − y2) dx + (x − y)2 dy = 0.

8. (y2 − 2x) dx + 2xy dy = 0.

9.
(

1

x
− y

x2 + y2

)
dx + x

x2 + y2
dy = 0.

10. [1+ ln (xy)] dx + xy−1 dy = 0.

11. [y cos(xy)− sin x] dx + x cos(xy) dy = 0.

12. (2xy + cos y) dx + (x2 − x sin y − 2y) dy = 0.

For Problems 13–15, solve the given initial-value problem.

13. (3x2 ln x + x2 − y) dx − xdy = 0, y(1) = 5.

14. 2x2y′ + 4xy = 3 sin x, y(2π) = 0.

15. (yexy + cos x) dx + xexy dy = 0, y(π/2) = 0.

16. Show that if φ(x, y) is a potential function for
M(x, y) dx+N(x, y) dy = 0, then so is φ(x, y)+ c,
where c is an arbitrary constant. This shows that po-
tential functions are uniquely defined only up to an
additive constant.

For Problems 17–19, determine whether the given function
is an integrating factor for the given differential equation.

17. I (x, y) = cos(xy), [tan(xy)+ xy] dx + x2 dy = 0.

18. I (x) = sec x, [2x− (x2+y2) tan x] dx+2y dy = 0.

19. I (x, y) = y−2e−x/y , y(x2 − 2xy) dx − x3 dy = 0.

For Problems 20–26, determine an integrating factor for
the given differential equation, and hence find the general
solution.

20. (xy − 1) dx + x2 dy = 0.

21. y dx − (2x + y4) dy = 0.

22. x2y dx + y(x3 + e−3y sin y) dy = 0.

23. (y − x2) dx + 2xdy = 0, x > 0.

24. xy[2 ln (xy)+ 1] dx + x2 dy = 0, x > 0.

25.
dy

dx
+ 2x

1+ x2
y = 1

(1+ x2)2
.

26. (3xy − 2y−1) dx + x(x + y−2) dy = 0.

For Problems 27–29, determine the values of the constants
r and s such that I (x, y) = xrys is an integrating factor for
the given differential equation.

27. (y−1 − x−1) dx + (xy−2 − 2y−1) dy = 0.

28. y(5xy2 + 4) dx + x(xy2 − 1) dy = 0.

29. 2y(y + 2x2) dx + x(4y + 3x2) dy = 0.

30. Prove that if (My − Nx)/M = g(y), a function of y
only, then an integrating factor for

M(x, y) dx +N(x, y) dy = 0

is I (y) = e−
∫
g(y) dy .
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31. Consider the general first-order linear differential
equation

dy

dx
+ p(x)y = q(x), (1.9.25)

wherep(x) andq(x) are continuous functions on some
interval (a, b).

(a) Rewrite Equation (1.9.25) in differential form,
and show that an integrating factor for the result-
ing equation is

I (x) = e
∫
p(x)dx. (1.9.26)

(b) Show that the general solution to Equation
(1.9.25) can be written in the form

y(x) = I−1
{∫ x

I (t)q(t) dt + c
}
,

where I is given in Equation (1.9.26), and c is an
arbitrary constant.

1.10 Numerical Solution to First-Order Differential Equations

So far in this chapter we have investigated first-order differential equations geometrically
via slope fields, and analytically by trying to construct exact solutions to certain types of
differential equations. Certainly, for most first-order differential equations, it simply is
not possible to find analytic solutions, since they will not fall into the few classes for which
solution techniques are available. Our final approach to analyzing first-order differential
equations is to look at the possibility of constructing a numerical approximation to the
unique solution to the initial-value problem

dy

dx
= f (x, y), y(x0) = y0. (1.10.1)

We consider three techniques that give varying levels of accuracy. In each case, we
generate a sequence of approximations y1, y2, . . . to the value of the exact solution at
the points x1, x2, . . . , where xn+1 = xn + h, n = 0, 1, . . . , and h is a real number.
We emphasize that numerical methods do not generate a formula for the solution to the
differential equation. Rather they generate a sequence of approximations to the value of
the solution at specified points. Furthermore, if we use a sufficient number of points, then
by plotting the points (xi, yi) and joining them with straight-line segments, we are able to
obtain an overall approximation to the solution curve corresponding to the solution of the
given initial-value problem. This is how the approximate solution curves were generated
in the preceding sections via the computer algebra system Maple. There are many subtle
ideas associated with constructing numerical solutions to initial-value problems that are
beyond the scope of this text. Indeed, a full discussion of the application of numerical
methods to differential equations is best left for a future course in numerical analysis.

Euler’s Method
Suppose we wish to approximate the solution to the initial-value problem (1.10.1) at
x = x1 = x0 + h, where h is small. The idea behind Euler’s method is to use the
tangent line to the solution curve through (x0, y0) to obtain such an approximation. (See
Figure 1.10.1.)

The equation of the tangent line through (x0, y0) is

y(x) = y0 +m(x − x0),

wherem is the slope of the curve at (x0, y0). From Equation (1.10.1),m = f (x0, y0), so

y(x) = y0 + f (x0, y0)(x − x0).


