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For Problems 21–24, use the LU factorization of A to solve
the system Ax = b.

21. A =
[

1 2
2 3

]
,b =

[
3
−1

]
.

22. A =

 1 −3 5

3 2 2
2 5 2


 ,b =


 1

5
−1


.

23. A =

 2 2 1

6 3 −1
−4 2 2


 ,b =


 1

0
2


.

24. A =




4 3 0 0
8 1 2 0
0 5 3 6
0 0 −5 7


 ,b =




2
3
0
5


.

25. Use the LU factorization of

A =
[

2 −1
−8 3

]

to solve each of the systems Axi = bi if

b1 =
[

3
−1

]
, b2 =

[
2
7

]
, b3 =

[
5
−9

]
.

26. Use the LU factorization of

A =

−1 4 2

3 1 4
5 −7 1




to solve each of the systems Axi = ei and thereby
determine A−1.

27. If P = P1P2 · · ·Pk , where each Pi is an elementary
permutation matrix, show that P−1 = PT .

28. Prove that

(a) The inverse of an invertible upper triangular ma-
trix is upper triangular. Repeat for an invertible
lower triangular matrix.

(b) The inverse of a unit upper triangular matrix is
unit upper triangular. Repeat for a unit lower tri-
angular matrix.

29. In this problem, we prove that the LU decomposition
of an invertible n × n matrix is unique in the sense
that, if A = L1U1 and A = L2U2, where L1, L2 are
unit lower triangular matrices and U1, U2 are upper
triangular matrices, then L1 = L2 and U1 = U2.

(a) Apply Corollary 2.6.12 to conclude that L2 and
U1 are invertible, and then use the fact that
L1U1 = L2U2 to establish that L−1

2 L1 =
U2U

−1
1 .

(b) Use the result from (a) together with Theo-
rem 2.2.22 and Corollary 2.2.23 to prove that
L−1

2 L1 = In and U2U
−1
1 = In, from which the

required result follows.

30. QR Factorization: It can be shown that any invertible
n× n matrix has a factorization of the form

A = QR,
where Q and R are invertible, R is upper triangular,
and Q satisfies QTQ = In (i.e., Q is orthogonal).
Determine an algorithm for solving the linear system
Ax = b using this QR factorization.

� For Problems 31–33, use some form of technology to de-
termine the LU factorization of the given matrix. Verify the
factorization by computing the product LU .

31. A =

 3 5 −2

2 7 9
−5 5 11


.

32. A =

 27 −19 32

15 −16 9
23 −13 51


.

33. A =




34 13 19 22
53 17 −71 20
21 37 63 59
81 93 −47 39


.

2.8 The Invertible Matrix Theorem I

In Section 2.6, we defined an n × n invertible matrix A to be a matrix such that there
exists an n × n matrix B satisfying AB = BA = In. There are, however, many other
important and useful viewpoints on invertibility of matrices. Some of these we have
already encountered in the preceding two sections, while others await us in later chapters.
It is worthwhile to begin collecting a list of conditions on an n × n matrix A that are
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mathematically equivalent to its invertibility. We refer to this theorem as the Invertible
Matrix Theorem. As we have indicated, this result is somewhat a “work in progress,”
and we shall return to it later in Sections 3.2 and 4.10.

Theorem 2.8.1 (Invertible Matrix Theorem)

Let A be an n × n matrix with real elements. The following conditions on A are
equivalent:

(a) A is invertible.

(b) The equation Ax = b has a unique solution for every b in R
n.

(c) The equation Ax = 0 has only the trivial solution x = 0.

(d) rank(A) = n.

(e) A can be expressed as a product of elementary matrices.

(f) A is row-equivalent to In.

Proof The equivalence of (a), (b), and (d) has already been established in Section 2.6
in Theorems 2.6.4 and 2.6.5, as well as in Corollary 2.6.6. Moreover, the equivalence of
(a) and (e) was already established in Theorem 2.7.5.

Next we establish that (c) is an equivalent statement by proving that (b) �⇒ (c)
�⇒ (d). Assuming that (b) holds, we can conclude that the linear system Ax = 0 has
a unique solution. However, one solution is evidently x = 0, hence this is the unique
solution to Ax = 0, which establishes (c). Next, assume that (c) holds. The fact that
Ax = 0 has only the trivial solution means that, in reducing A to row-echelon form, we
find no free parameters. Thus, every column (and hence every row) ofA contains a pivot,
which means that the row-echelon form of A has n nonzero rows; that is, rank(A) = n,
which is (d).

Finally, we prove that (e) �⇒ (f) �⇒ (a). If (e) holds, we can left multiply In
by a product of elementary matrices (corresponding to a sequence of elementary row
operations applied to In) to obtain A. This means that A is row-equivalent to In, which
is (f). Last, if A is row-equivalent to In, we can write A as a product of elementary
matrices, each of which is invertible. Since a product of invertible matrices is invertible
(by Corollary 2.6.10), we conclude that A is invertible, as needed.

Exercises for 2.8

Skills

• Know the list of characterizations of invertible matri-
ces given in the Invertible Matrix Theorem.

• Be able to use the Invertible Matrix Theorem to draw
conclusions related to the invertibility of a matrix.

True-False Review
For Questions 1–4, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. If the linear system Ax = 0 has a nontrivial solution,
then A can be expressed as a product of elementary
matrices.

2. A 4× 4 matrix A with rank(A) = 4 is row-equivalent
to I4.

3. IfA is a 3×3 matrix with rank(A) = 2, then the linear
system Ax = b must have infinitely many solutions.

4. Any n × n upper triangular matrix is row-equivalent
to In.
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Problems

1. Use part (c) of the Invertible Matrix Theorem to prove
that if A is an invertible matrix and B and C are ma-
trices of the same size as A such that AB = AC, then
B = C. [Hint: Consider AB − AC = 0.]

2. Give a direct proof of the fact that (d) �⇒ (c) in the
Invertible Matrix Theorem.

3. Give a direct proof of the fact that (c) �⇒ (b) in the
Invertible Matrix Theorem.

4. Use the equivalence of (a) and (e) in the Invertible Ma-
trix Theorem to prove that if A and B are invertible
n× n matrices, then so is AB.

5. Use the equivalence of (a) and (c) in the Invertible Ma-
trix Theorem to prove that if A and B are invertible
n× n matrices, then so is AB.

2.9 Chapter Review

In this chapter we have investigated linear systems of equations. Matrices provide a
convenient mathematical representation for linear systems, and whether or not a linear
system has a solution (and if so, how many) can be determined entirely from the matrix
for the linear system.

An m× n matrix A = [aij ] is a rectangular array of numbers arranged in m rows
and n columns. The entry in the ith row and j th column is written aij . More generally,
such an array, whose entries are allowed to depend on an indeterminate t , is known as
a matrix function. Matrix functions can be used to formulate systems of differential
equations.

If m = n, the matrix (or matrix function) is called a square matrix.

Concepts Related to Square Matrices
• Main diagonal: the entries a11, a22, . . . , ann in the matrix.

• Trace: the sum of the entries on the main diagonal.

• Upper triangular matrix: aij = 0 for i > j .

• Lower triangular matrix: aij = 0 for i < j .

• Diagonal matrix: aij = 0 for i �= j .

• Transpose: applying to anym×nmatrixA, this is the n×mmatrixAT obtained
from A by interchanging its rows and columns

• Symmetric matrix: AT = A; that is, aij = aji .
• Skew-symmetric matrix: AT = −A; that is, aij = −aji . In particular, aii = 0

for each i.

Matrix Algebra
Given two matrices A and B of the same size m × n, we can perform the following
operations:

• Addition/subtractionA±B: add/subtract the corresponding elements ofA andB.

• Scalar multiplication rA: multiply each entry of A by the real (or complex)
scalar r .

If A is m × n and B is n × p, we can form their product AB, which is an m × p
matrix whose (i, j)-entry is computed by taking the dot product of the ith row vector of
A with the j th column vector of B. Note that, in general, AB �= BA.
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Linear Systems
The general m× n system of linear equations is of the form

a11x1 + a12x2 + · · · + a1nxn = b1,

a21x1 + a22x2 + · · · + a2nxn = b2,
...

am1x1 + am2x2 + · · · + amnxn = bm.

If eachbi = 0, the system is called homogeneous. There are two useful ways to formulate
the above linear system:

1. Augmented matrix:

A# =



a11 a12 . . . a1n b1
a21 a22 . . . a2n b2

...
...

am1 am2 . . . amn bm


 .

2. Vector form:
Ax = b,

where

A =



a11 a12 . . . a1n
a21 a22 . . . a2n

...

am1 am2 . . . amn


 , x =



x1
x2
...

xn


 , b =



b1
b2
...

bm


 .

Elementary Row Operations and Row Echelon Form
There are three types of elementary row operations on a matrix A:

1. Pij : Permute the ith and j th rows in A.

2. Mi (k): Multiply the entries in the ith row of A by the nonzero scalar k.

3. Aij (k): Add to the elements of the j th row ofA the scalar k times the corresponding
elements of the ith row of A.

By performing elementary row operations on the augmented matrix above, we can
determine solutions, if any, to the linear system. The strategy is to apply elementary
row operations in such a way that A is transformed into row-echelon form—a process
known as Gaussian elimination. By applying back substitution to the linear system
corresponding to the row-echelon form obtained, we find the solution. This solution
agrees with the solution to the original linear system. If necessary, free parameters may
be used to express this solution. A leading one in the far right-hand column of the
row-echelon form indicates that the system has no solution.

A row-echelon form matrix is one in which

• All rows consisting entirely of zeros are placed at the bottom of the matrix.

• All other rows begin with a (leading) “1”, called a pivot.

• The leading ones occur in columns strictly to the right of the leading ones in the
rows above.
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Invertible Matrices

An n×nmatrixA is invertible if there exists an n×nmatrixB such thatAB = In = BA,
where In is the n× n identity matrix (ones on the main diagonal, zeros elsewhere). We
write A−1 for the (unique) inverse B of A. One procedure for determining A−1, if it
exists, is the Gauss-Jordan technique:

[A|In] ∼ ERO. . . ∼ [In|A−1].

Invertible matrices A share all of the following equivalent properties:

• A can be reduced to In via a sequence of elementary row operations.

• The linear system Ax = b has a unique solution x.

• The linear system Ax = 0 has only the trivial solution x = 0.

• A can be expressed as a product of elementary matrices that are obtained from
the identity matrix by applying exactly one elementary row operation.

Additional Problems

Let

A =
[−2 4 2 6
−1 −1 5 0

]
, B =



−3 0

2 2
1 −3
0 1


 , C =



−5
−6

3
1


 ,

and r = −4. For Problems 1–6, compute the given expres-
sion, if possible.

1. rA− BT .

2. AB and tr(AB).

3. (AC)(AC)T .

4. (rB)A.

5. (AB)−1.

6. CT C and tr(CT C).

7. Let

A =
[

1 2 3
2 5 7

]
and B =


 3 b
−4 a
a b


 .

(a) Compute AB and determine the values of a and
b such that AB = I2.

(b) Using the values of a and b obtained in (a), com-
pute BA.

8. LetA be anm×nmatrix and letB be an p×nmatrix.
Use the index form of the matrix product to prove that
(ABT )T = BAT .

9. Let A be an n× n matrix.

(a) Use the index form of the matrix product to write
the ij th element of A2.

(b) In the case when A is a symmetric matrix, show
that A2 is also symmetric.

10. LetA andB be n×nmatrices. IfA is skew-symmetric,
use properties of the transpose to establish thatBT AB
is also skew-symmetric.

An n × n matrix A is called nilpotent if Ap = 0 for some
positive integer p. For Problems 11–12, show that the given
matrix is nilpotent.

11. A =
[

3 9
−1 −3

]
.

12. A =

 0 1 1

0 0 1
0 0 0


.
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For Problems 13–16, let

A(t) =

 e−3t − sec2 t

2t3 cos t
6 ln t 36− 5t




and

B(t) =



−7 t2

6− t 3t3 + 6t2

1+ t cos(πt/2)
et 1− t3


 .

Compute the given expression, if possible.

13. A′(t).

14.
∫ 1

0 B(t) dt .

15. t3 · A(t)− sin t · B(t).
16. B ′(t)− etA(t).

For Problems 17–23, determine the solution set to the given
linear system of equations.

17.
x1 + 5x2 + 2x3 = −6,

4x2 − 7x3 = 2,
5x3 = 0.

18.
5x1 − x2 + 2x3 = 7,
−2x1 + 6x2 + 9x3 = 0,
−7x1 + 5x2 − 3x3 = −7.

19.
x + 2y − z = 1,
x + z = 5,

4x + 4y = 12.

20.
x1 − 2x2 − x3 + 3x4 = 0,

−2x1 + 4x2 + 5x3 − 5x4 = 3,
3x1 − 6x2 − 6x3 + 8x4 = 2.

21.

3x1 − x3 + 2x4 − x5 = 1,
x1 + 3x2 + x3 − 3x4 + 2x5 = −1,

4x1 − 2x2 − 3x3 + 6x4 − x5 = 5.
x4 + 4x5 = −2.

22.

x1 + x2 + x3 + x4 − 3x5 = 6,
x1 + x2 + x3 + 2x4 − 5x5 = 8,

2x1 + 3x2 + x3 + 4x4 − 9x5 = 17,
2x1 + 2x2 + 2x3 + 3x4 − 8x5 = 14.

23.
x1 − 3x2 + 2ix3 = 1,

−2ix1 + 6x2 + 2x3 = −2.

For Problems 24–27, determine all values of k for which the
given linear system has (a) no solution, (b) a unique solution,
and (c) infinitely many solutions.

24.
x1 − kx2 = 6,

2x1 + 3x2 = k.

25.
kx1 + 2x2 − x3 = 2,

kx2 + x3 = 2.

26.
10x1 +kx2 −x3 = 0,
kx1 +x2 −x3 = 0,
2x1 +x2 −x3 = 0.

27.
x1 − kx2 + k2x3 = 0,
x1 + kx3 = 0,

x2 − x3 = 1.

28. Do the three planes x1 + 2x2 + x3 = 4, x2 − x3 = 1,
and x1 + 3x2 = 0 have at least one common point of
intersection? Explain.

For Problems 29–34, (a) find a row-echelon form of the given
matrix A, (b) determine rank(A), and (c) use the Gauss-
Jordan technique to determine the inverse of A, if it exists.

29. A =
[

4 7
−2 5

]
.

30. A =
[

2 −7
−4 14

]
.

31. A =

 3 −1 6

0 2 3
3 −5 0


.

32. A =




2 1 0 0
1 2 0 0
0 0 3 4
0 0 4 3


.

33. A =

 3 0 0

0 2 −1
1 −1 2


.

34. A =

−2 −3 1

1 4 2
0 5 3


.

35. Let

A =

1 −1 3

4 −3 13
1 1 4


 .

Solve each of the systems

Axi = ei , i = 1, 2, 3

where ei denote the column vectors of the identity ma-
trix I3.
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36. Solve each of the systems Axi = bi if

A =
[

2 5
7 −2

]
, b1 =

[
1
2

]
,

b2 =
[

4
3

]
, b3 =

[−2
5

]
.

37. Let A and B be invertible matrices.

(a) By computing an appropriate matrix product, ver-
ify that (A−1B)−1 = B−1A.

(b) Use properties of the inverse to derive
(A−1B)−1 = B−1A.

38. Let S be an invertible n × n matrix and let k be
a nonnegative integer. If A = SDS−1, prove that
Ak = SDkS−1.

For Problems 39–42, (a) express the given matrix as a product
of elementary matrices, and (b) determine the LU decompo-
sition of the matrix.

39. The matrix in Problem 29.

40. The matrix in Problem 32.

41. The matrix in Problem 33.

42. The matrix in Problem 34.

43. (a) Prove that if A and B are n× n matrices, then

(A+ B)3 = A3 + A2B + ABA+ BA2

+ AB2 + BAB + B2A+ B3.

(b) How does the formula change for (A− B)3?

(c) Can you make a conjecture about the number of
terms in the expansion of (A + B)k , in terms of
k?

44. Suppose that A and B are invertible matrices. Prove
that the block matrix[

A 0
0 B−1

]

is invertible.

45. In many different positions can two leading ones of a
row-echelon form of a 2×4 matrix occur? How about
three leading ones for a 3× 4 matrix? How about four
leading ones for a 4×6 matrix? How aboutm leading
ones for an m× n matrix with m ≤ n?

46. If the inverse ofA2 is the matrixB, what is the inverse
of the matrix A10? Prove your answer.

Project: Circles and Spheres via Gaussian Elimination

Part 1: Circles In this part, we shall see that any three noncollinear points in the plane
can be found on a unique circle, and we will use Gaussian elimination to find the center
and radius of this circle.

(a) Show geometrically that three noncollinear points in the plane must lie on a unique
circle. [Hint: The radius must lie on the line that passes through the midpoint of
two of the three points and that is perpendicular to the segment connecting the two
points.]

(b) A circle in the plane has an equation that can be given in the form

(x − a)2 + (y − b)2 = r2,

where (a, b) is the center and r is the radius. By expanding the formula, we may
write the equation of the circle in the form

x2 + y2 + cx + dy = k,
for constants c, d, and k. Using this latter formula together with Gaussian elim-
ination, determine c, d, and k for each set of points below. Then solve for (a, b)
and r to write the equation of the circle.

(i) (2,−1), (3, 3), (4,−1).

(ii) (−1, 0), (1, 2), (2, 2).
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Part 2: Spheres In this part, we shall extend the ideas of Part 1 and consider four
noncoplanar points in 3-space. Any three of these four points lie in a plane but are
noncollinear (why?). A sphere in 3-space has an equation that can be given in the form

(x − a)2 + (y − b)2 + (z− c)2 = r2,

where (a, b, c) is the center and r is the radius. By expanding the formula, we may write
the equation of the sphere in the form

x2 + y2 + z2 + ux + vy + wz = k,
for constants u, v,w, and k.

(a) Using the latter formula above together with Gaussian elimination, determine
u, v,w, and k for each set of points below. Then solve for (a, b, c) and r to write
the equation of the sphere.

(i) (1,−1, 2), (2,−1, 4), (−1,−1,−1), (1, 4, 1).

(ii) (2, 0, 0), (0, 3, 0), (0, 0, 4), (0, 0, 6).

(b) What goes wrong with the procedure in (a) if the points lie on a single plane?
Choose four points of your own and carry out the procedure in part (a) to see what
happens. Can you describe circumstances under which the four coplanar points
will lie on a sphere?


