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312 CHAPTER 4 Vector Spaces

For Problems 9–12, determine the solution set to Ax = b,
and show that all solutions are of the form (4.9.3).

9. A =

 1 3 −1

2 7 9
1 5 21


 ,b =


 4

11
10


.

10. A =

 2 −1 1 4

1 −1 2 3
1 −2 5 5


 ,b =


 5

6
13


.

11. A =




1 1 −2
3 −1 −7
1 1 1
2 2 −4


 ,b =



−3

2
0
−6


.

12. A =

 1 1 −1 5

0 2 −1 7
4 2 −3 13


 ,b =


 0

0
0


.

13. Show that a 3× 7 matrix A with nullity(A) = 4 must
have colspace(A) = R

3. Is rowspace(A) = R
3?

14. Show that a 6× 4 matrix A with nullity(A) = 0 must
have rowspace(A) = R

4. Is colspace(A) = R
4?

15. Prove that if rowspace(A) = nullspace(A), then A
contains an even number of columns.

16. Show that a 5×7 matrixAmust have 2 ≤ nullity(A) ≤
7. Give an example of a 5 × 7 matrix A with
nullity(A) = 2 and an example of a 5 × 7 matrix
A with nullity(A) = 7.

17. Show that 3×8 matrixAmust have 5 ≤ nullity(A) ≤
8. Give an example of a 3 × 8 matrix A with
nullity(A) = 5 and an example of a 3 × 8 matrix
A with nullity(A) = 8.

18. Prove that if A and B are n × n matrices and A is
invertible, then

nullity(AB) = nullity(B).

[Hint: Bx = 0 if and only if ABx = 0.]

4.10 The Invertible Matrix Theorem II

In Section 2.8, we gave a list of characterizations of invertible matrices (Theorem 2.8.1).
In view of the concepts introduced in this chapter, we are now in a position to add to the
list that was begun there.

Theorem 4.10.1 (Invertible Matrix Theorem)

LetAbe ann×nmatrix with real elements. The following conditions onA are equivalent:

(a) A is invertible.

(h) nullity(A) = 0.

(i) nullspace(A) = {0}.
(j) The columns of A form a linearly independent set of vectors in R

n.

(k) colspace(A) = R
n (that is, the columns of A span R

n).

(l) The columns of A form a basis for R
n.

(m) The rows of A form a linearly independent set of vectors in R
n.

(n) rowspace(A) = R
n (that is, the rows of A span R

n).

(o) The rows of A form a basis for R
n.

(p) AT is invertible.

Proof The equivalence of (a) and (h) follows at once from Theorem 2.8.1(d) and the
Rank-Nullity Theorem (Theorem 4.9.1). The equivalence of (h) and (i) is immediately
clear. The equivalence of (a) and (j) is immediate from Theorem 2.8.1(c) and Theo-
rem 4.5.14. Since the dimension of colspace(A) is simply rank(A), the equivalence of
(a) and (k) is immediate from Theorem 2.8.1(d). Next, from the definition of a basis,
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we see that (j) and (k) are logically equivalent to (l). Moreover, since the row space
and column space of A have the same dimension, (k) and (n) are equivalent. Since
rowspace(A) = colspace(AT ), the equivalence of (k) and (n) proves that (a) and (p) are
equivalent. Finally, the equivalence of (a) and (p) proves that (j) is equivalent to (m) and
that (l) is equivalent to (o).

Example 4.10.2 Do the rows of the matrix below span R
4?

A =



−2 −2 1 3

3 3 0 −1
−1 −1 −2 −5

2 2 1 1




Solution: We see by inspection that the columns of A are linearly dependent, since
the first two columns are identical. Therefore, by the equivalence of (j) and (n) in the
Invertible Matrix Theorem, the rows of A do not span R

4. �

Example 4.10.3 If A is an n × n matrix such that the linear system AT x = 0 has no nontrivial solution

x, then nullspace(AT ) = {0}, and thus AT is invertible by the equivalence of (a) and (i)
in the Invertible Matrix Theorem. Thus, by the same theorem, we can conclude that the
columns of A form a linearly independent set. �

Despite the lengthy list of characterizations of invertible matrices that we have been
able to develop so far, this list is still by no means complete. In the next chapter, we
will use linear transformations and eigenvalues to provide further characterizations of
invertible matrices.

Exercises for 4.10

Skills

• Be well familiar with all of the conditions (a)–(p) in the
Invertible Matrix Theorem that characterize invertible
matrices.

True-False Review
For Questions 1–10, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.

1. The set of all row vectors of an invertible matrix is
linearly independent.

2. An n×nmatrix can have n linearly independent rows
and n linearly dependent columns.

3. The set of all row vectors of an n×nmatrix can be lin-
early dependent while the set of all columns is linearly
independent.

4. If A is an n × n matrix with det(A) = 0, then the
columns of A must form a basis for R

n.

5. IfA andB are row-equivalent n×nmatrices such that
rowspace(A) �= R

n, then colspace(B) �= R
n.

6. If E is an n× n elementary matrix and A is an n× n
matrix with nullspace(A) = {0}, then det(EA) = 0.

7. If A and B are n × n invertible matrices, then
nullity([A|B]) = 0, where [A|B] is the n× 2nmatrix
with the blocks A and B as shown.

8. A matrix of the form
 0 a 0
b 0 c

0 d 0




cannot be invertible.
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9. A matrix of the form


0 a 0 b

c 0 d 0
0 e 0 f
g 0 h 0




cannot be invertible.

10. A matrix of the form
 a b c

d e f

g h i




such that ae − bd = 0 cannot be invertible.

4.11 Inner Product Spaces

We now extend the familiar idea of a dot product for geometric vectors to an arbitrary
vector space V . This enables us to associate a magnitude with each vector in V and also
to define the angle between two vectors in V . The major reason that we want to do this
is that, as we will see in the next section, it enables us to construct orthogonal bases in
a vector space, and the use of such a basis often simplifies the representation of vectors.
We begin with a brief review of the dot product.

Let x = (x1, x2, x3) and y = (y1, y2, y3) be two arbitrary vectors in R
3, and consider

the corresponding geometric vectors

x = x1i+ x2j+ x3k, y = y1i+ y2j+ y3k.

The dot product of x and y can be defined in terms of the components of these vectors as

x · y = x1y1 + x2y2 + x3y3. (4.11.1)

An equivalent geometric definition of the dot product is

x · y = ||x|| ||y|| cos θ, (4.11.2)

where ||x||, ||y|| denote the lengths of x and y respectively, and 0 ≤ θ ≤ π is the angle
between them. (See Figure 4.11.1.)
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Figure 4.11.1: Defining the dot
product in R

3.

Taking y = x in Equations (4.11.1) and (4.11.2) yields

||x||2 = x · x = x2
1 + x2

2 + x2
3 ,

so that the length of a geometric vector is given in terms of the dot product by

||x|| = √x · x =
√
x2

1 + x2
2 + x2

3 .

Furthermore, from Equation (4.11.2), the angle between any two nonzero vectors x and
y is

cos θ = x · y
||x|| ||y|| , (4.11.3)

which implies that x and y are orthogonal (perpendicular) if and only if

x · y = 0.

In a general vector space, we do not have a geometrical picture to guide us in defining
the dot product, hence our definitions must be purely algebraic. We begin by considering
the vector space R

n, since there is a natural way to extend Equation (4.11.1) in this
case. Before proceeding, we note that from now on we will use the standard terms inner
product and norm in place of dot product and length, respectively.


