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314 CHAPTER 4 Vector Spaces

9. A matrix of the form


0 a 0 b

c 0 d 0
0 e 0 f
g 0 h 0




cannot be invertible.

10. A matrix of the form
 a b c

d e f

g h i




such that ae − bd = 0 cannot be invertible.

4.11 Inner Product Spaces

We now extend the familiar idea of a dot product for geometric vectors to an arbitrary
vector space V . This enables us to associate a magnitude with each vector in V and also
to define the angle between two vectors in V . The major reason that we want to do this
is that, as we will see in the next section, it enables us to construct orthogonal bases in
a vector space, and the use of such a basis often simplifies the representation of vectors.
We begin with a brief review of the dot product.

Let x = (x1, x2, x3) and y = (y1, y2, y3) be two arbitrary vectors in R
3, and consider

the corresponding geometric vectors

x = x1i+ x2j+ x3k, y = y1i+ y2j+ y3k.

The dot product of x and y can be defined in terms of the components of these vectors as

x · y = x1y1 + x2y2 + x3y3. (4.11.1)

An equivalent geometric definition of the dot product is

x · y = ||x|| ||y|| cos θ, (4.11.2)

where ||x||, ||y|| denote the lengths of x and y respectively, and 0 ≤ θ ≤ π is the angle
between them. (See Figure 4.11.1.)

�

z

y

x

x

y(x1, x2, x3)

(y1, y2, y3)

Figure 4.11.1: Defining the dot
product in R

3.

Taking y = x in Equations (4.11.1) and (4.11.2) yields

||x||2 = x · x = x2
1 + x2

2 + x2
3 ,

so that the length of a geometric vector is given in terms of the dot product by

||x|| = √x · x =
√
x2

1 + x2
2 + x2

3 .

Furthermore, from Equation (4.11.2), the angle between any two nonzero vectors x and
y is

cos θ = x · y
||x|| ||y|| , (4.11.3)

which implies that x and y are orthogonal (perpendicular) if and only if

x · y = 0.

In a general vector space, we do not have a geometrical picture to guide us in defining
the dot product, hence our definitions must be purely algebraic. We begin by considering
the vector space R

n, since there is a natural way to extend Equation (4.11.1) in this
case. Before proceeding, we note that from now on we will use the standard terms inner
product and norm in place of dot product and length, respectively.
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DEFINITION 4.11.1

Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be vectors in R
n. We define the

standard inner product in R
n, denoted 〈x, y〉, by

〈x, y〉 = x1y1 + x2y2 + · · · + xnyn.
The norm of x is

||x|| = √〈x, x〉 =
√
x2

1 + x2
2 + · · · + x2

n.

Example 4.11.2 If x = (1,−1, 0, 2, 4) and y = (2, 1, 1, 3, 0) in R
5, then

〈x, y〉 = (1)(2)+ (−1)(1)+ (0)(1)+ (2)(3)+ (4)(0) = 7,

||x|| =
√

12 + (−1)2 + 02 + 22 + 42 = √22,

||y|| =
√

22 + 12 + 12 + 32 + 02 = √15. �

Basic Properties of the Standard Inner Product in R
n

In the case of R
n, the definition of the standard inner product was a natural extension of

the familiar dot product in R
3. To generalize this definition further to an arbitrary vector

space, we isolate the most important properties of the standard inner product in R
n and

use them as the defining criteria for a general notion of an inner product. Let us examine
the inner product in R

n more closely. We view it as a mapping that associates with any
two vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in R

n the real number

〈x, y〉 = x1y1 + x2y2 + · · · + xnyn.
This mapping has the following properties:

For all x, y, and z in R
n and all real numbers k,

1. 〈x, x〉 ≥ 0. Furthermore, 〈x, x〉 = 0 if and only if x = 0.

2. 〈y, x〉 = 〈x, y〉.
3. 〈kx, y〉 = k〈x, y〉.
4. 〈x + y, z〉 = 〈x, z〉 + 〈y, z〉.

These properties are easily established using Definition 4.11.1. For example, to prove
property 1, we proceed as follows. From Definition 4.11.1,

〈x, x〉 = x2
1 + x2

2 + · · · + x2
n.

Since this is a sum of squares of real numbers, it is necessarily nonnegative. Further,
〈x, x〉 = 0 if and only if x1 = x2 = · · · = xn = 0—that is, if and only if x = 0.
Similarly, for property 2, we have

〈y, x〉 = y1x1 + y2x2 + · · · + ynxn = x1y1 + x2y2 + · · · + xnyn = 〈x, y〉.
We leave the verification of properties 3 and 4 for the reader.
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Definition of a Real Inner Product Space
We now use properties 1–4 as the basic defining properties of an inner product in a real
vector space.

DEFINITION 4.11.3

Let V be a real vector space. A mapping that associates with each pair of vectors u
and v in V a real number, denoted 〈u, v〉, is called an inner product in V , provided
it satisfies the following properties. For all u, v, and w in V , and all real numbers k,

1. 〈u,u〉 ≥ 0. Furthermore, 〈u,u〉 = 0 if and only if u = 0.

2. 〈v,u〉 = 〈u, v〉.
3. 〈ku, v〉 = k〈u, v〉.
4. 〈u+ v,w〉 = 〈u,w〉 + 〈v,w〉.

The norm of u is defined in terms of an inner product by

||u|| = √〈u,u〉.
A real vector space together with an inner product defined in it is called a real inner
product space.

Remarks

1. Observe that ||u|| = √〈u,u〉 takes a well-defined nonnegative real value, since
property 1 of an inner product guarantees that the norm evaluates the square root
of a nonnegative real number.

2. It follows from the discussion above that R
n together with the inner product defined

in Definition 4.11.1 is an example of a real inner product space.

One of the fundamental inner products arises in the vector space C0[a, b] of all
real-valued functions that are continuous on the interval [a, b]. In this vector space, we
define the mapping 〈f, g〉 by

〈f, g〉 =
∫ b

a

f (x)g(x) dx, (4.11.4)

for all f and g in C0[a, b]. We establish that this mapping defines an inner product in
C0[a, b] by verifying properties 1–4 of Definition 4.11.3. If f is in C0[a, b], then

〈f, f 〉 =
∫ b

a

[f (x)]2 dx.

Since the integrand, [f (x)]2, is a nonnegative continuous function, it follows that 〈f, f 〉
measures the area between the graph y = [f (x)]2 and the x-axis on the interval [a, b].
(See Figure 4.11.2.)

a
x

y

y � [f(x)]2

b

Figure 4.11.2: 〈f, f 〉 gives the
area between the graph of
y = [f (x)]2 and the x-axis, lying
over the interval [a, b].

Consequently, 〈f, f 〉 ≥ 0. Furthermore, 〈f, f 〉 = 0 if and only if there is zero area
between the graph y = [f (x)]2 and the x-axis—that is, if and only if

[f (x)]2 = 0 for all x in [a, b].
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Hence, 〈f, f 〉 = 0 if and only if f (x) = 0, for all x in [a, b], so f must be the zero
function. (See Figure 4.11.3.) Consequently, property 1 of Definition 4.11.3 is satisfied.
Now let f, g, and h be in C0[a, b], and let k be an arbitrary real number. Then

〈g, f 〉 =
∫ b

a

g(x)f (x) dx =
∫ b

a

f (x)g(x) dx = 〈f, g〉.

Hence, property 2 of Definition 4.11.3 is satisfied.
a

x

y

f(x) � 0 for all x in [a,b]

b

Figure 4.11.3: 〈f, f 〉 = 0 if
and only if f is the zero function.

For property 3, we have

〈kf, g〉 =
∫ b

a

(kf )(x)g(x) dx =
∫ b

a

kf (x)g(x) dx = k
∫ b

a

f (x)g(x) dx = k〈f, g〉,

as needed. Finally,

〈f + g, h〉 =
∫ b

a

(f + g)(x)h(x) dx =
∫ b

a

[f (x)+ g(x)]h(x) dx

=
∫ b

a

f (x)h(x) dx +
∫ b

a

g(x)h(x) dx = 〈f, h〉 + 〈g, h〉,

so that property (4) of Definition 4.11.3 is satisfied. We can now conclude that Equa-
tion (4.11.4) does define an inner product in the vector space C0[a, b].

Example 4.11.4 Use Equation (4.11.4) to determine the inner product of the following functions in

C0[0, 1]:
f (x) = 8x, g(x) = x2 − 1.

Also find ||f || and ||g||.
Solution: From Equation (4.11.4),

〈f, g〉 =
∫ 1

0
8x(x2 − 1) dx =

[
2x4 − 4x2

]1

0
= −2.

Moreover, we have

||f || =
√∫ 1

0
64x2 dx = 8√

3

and

||g|| =
√∫ 1

0
(x2 − 1)2 dx =

√∫ 1

0
(x4 − 2x2 + 1) dx =

√
8

15
. �

We have already seen that the norm concept generalizes the length of a geometric
vector. Our next goal is to show how an inner product enables us to define the angle
between two vectors in an abstract vector space. The key result is the Cauchy-Schwarz
inequality established in the next theorem.

Theorem 4.11.5 (Cauchy-Schwarz Inequality)

Let u and v be arbitrary vectors in a real inner product space V . Then

|〈u, v〉| ≤ ||u|| ||v||. (4.11.5)
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Proof Let k be an arbitrary real number. For the vector u+ kv, we have

0 ≤ ||u+ kv||2 = 〈u+ kv,u+ kv〉. (4.11.6)

But, using the properties of a real inner product,

〈u+ kv,u+ kv〉 = 〈u,u+ kv〉 + 〈kv,u+ kv〉
= 〈u+ kv,u〉 + 〈u+ kv, kv〉
= 〈u,u〉 + 〈kv,u〉 + 〈u, kv〉 + 〈kv, kv〉
= 〈u,u〉 + 2〈kv,u〉 + k〈v, kv〉
= 〈u,u〉 + 2〈kv,u〉 + k〈kv, v〉
= 〈u,u〉 + 2〈kv,u〉 + k2〈v, v〉
= ||u||2 + 2k〈v,u〉 + k2||v||2.

Consequently, (4.11.6) implies that

||v||2k2 + 2〈u, v〉k + ||u||2 ≥ 0. (4.11.7)

The left-hand side of this inequality defines the quadratic expression

P(k) = ||v||2k2 + 2〈u, v〉k + ||u||2.
The discriminant of this quadratic is


 = 4(〈u, v〉)2 − 4||u||2||v||2.
If
 > 0, then P(k) has two real and distinct roots. This would imply that the graph of P
crosses the k-axis and, therefore, P would assume negative values, contrary to (4.11.7).
Consequently, we must have 
 ≤ 0. That is,

4(〈u, v〉)2 − 4||u||2||v||2 ≤ 0,

or equivalently,
(〈u, v〉)2 ≤ ||u||2||v||2.

Hence,

|〈u, v〉| ≤ ||u|| ||v||.

If u and v are arbitrary vectors in a real inner product space V , then 〈u, v〉 is a real
number, and so (4.11.5) can be written in the equivalent form

−||u|| ||v|| ≤ 〈u, v〉 ≤ ||u|| ||v||.
Consequently, provided that u and v are nonzero vectors, we have

−1 ≤ 〈u, v〉
||u|| ||v|| ≤ 1.

Thus, each pair of nonzero vectors in a real inner product space V determines a unique
angle θ by

cos θ = 〈u, v〉
||u|| ||v|| , 0 ≤ θ ≤ π. (4.11.8)
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We call θ the angle between u and v. In the case when u and v are geometric vectors,
the formula (4.11.8) coincides with Equation (4.11.3).

Example 4.11.6 Determine the angle between the vectors u = (1,−1, 2, 3) and v = (−2, 1, 2,−2) in

R
4.

Solution: Using the standard inner product in R
4 yields

〈u, v〉 = −5, ||u|| = √15, ||v|| = √13,

so that the angle between u and v is given by

cos θ = − 5√
15
√

13
= −
√

195

39
, 0 ≤ θ ≤ π.

Hence,

θ = arccos

(
−
√

195

39

)
≈ 1.937 radians ≈ 110◦ 58′. �

Example 4.11.7 Use the inner product (4.11.4) to determine the angle between the functions f1(x) =
sin 2x and f2(x) = cos 2x on the interval [−π, π ].
Solution: Using the inner product (4.11.4), we have

〈f1, f2〉 =
∫ π

−π
sin 2x cos 2x dx = 1

2

∫ π

−π
sin 4x dx = 1

8
(− cos 4x)

∣∣π−π = 0.

Consequently, the angle between the two functions satisfies

cos θ = 0, 0 ≤ θ ≤ π,
which implies that θ = π/2. We say that the functions are orthogonal on the interval
[−π, π], relative to the inner product (4.11.4). In the next section we will have much
more to say about orthogonality of vectors. �

Complex Inner Products9

The preceding discussion has been concerned with real vector spaces. In order to gener-
alize the definition of an inner product to a complex vector space, we first consider the
case of C

n. By analogy with Definition 4.11.1, one might think that the natural inner
product in C

n would be obtained by summing the products of corresponding components
of vectors in C

n in exactly the same manner as in the standard inner product for R
n.

However, one reason for introducing an inner product is to obtain a concept of “length”
of a vector. In order for a quantity to be considered a reasonable measure of length, we
would want it to be a nonnegative real number that vanishes if and only if the vector
itself is the zero vector (property 1 of a real inner product). But, if we apply the inner
product in R

n given in Definition 4.11.1 to vectors in C
n, then, since the components

of vectors in C
n are complex numbers, it follows that the resulting norm of a vector in

9In the remainder of the text, the only complex inner product that we will require is the standard inner
product in C

n, and this is needed only in Section 5.10.
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C
n would be a complex number also. Furthermore, applying the R

2 inner product to, for
example, the vector u = (1− i, 1+ i), we obtain

||u||2 = (1− i)2 + (1+ i)2 = 0,

which means that a nonzero vector would have zero “length.” To rectify this situation,
we must define an inner product in C

n more carefully. We take advantage of complex
conjugation to do this, as the definition shows.

DEFINITION 4.11.8

If u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) are vectors in C
n, we define the

standard inner product in C
n by10

〈u, v〉 = u1v1 + u2v2 + · · · + unvn.
The norm of u is defined to be the real number

||u|| = √〈u,u〉 =
√
|u1|2 + |u2|2 + · · · + |un|2.

The preceding inner product is a mapping that associates with the two vectors
u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) in C

n the scalar

〈u, v〉 = u1v1 + u2v2 + · · · + unvn.
In general, 〈u, v〉 will be nonreal (i.e., it will have a nonzero imaginary part). The key
point to notice is that the norm of u is always a real number, even though the separate
components of u are complex numbers.

Example 4.11.9 If u = (1+ 2i, 2− 3i) and v = (2− i, 3+ 4i), find 〈u, v〉 and ||u||.
Solution: Using Definition 4.11.8,

〈u, v〉 = (1+ 2i)(2+ i)+ (2− 3i)(3− 4i) = 5i − 6− 17i = −6− 12i,

||u|| = √〈u,u〉 = √(1+ 2i)(1− 2i)+ (2− 3i)(2+ 3i) = √5+ 13 = 3
√

2. �

The standard inner product in C
n satisfies properties (1), (3), and (4), but not property

(2). We now derive the appropriate generalization of property (2) when using the standard
inner product in C

n. Let u = (u1, u2, . . . , un) and v = (v1, v2, . . . , vn) be vectors in
C
n. Then, from Definition 4.11.8,

〈v,u〉 = v1u1 + v2u2 + · · · + vnun = u1v1 + u2v2 + · · · + unvn = 〈u, v〉.
Thus,

〈v,u〉 = 〈u, v〉.
We now use the properties satisfied by the standard inner product in C

n to define an inner
product in an arbitrary (that is, real or complex) vector space.

10
Recall that if z = a + ib, then z = a − ib and |z|2 = zz = (a + ib)(a − ib) = a2 + b2.
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DEFINITION 4.11.10

Let V be a (real or complex) vector space. A mapping that associates with each pair
of vectors u, v in V a scalar, denoted 〈u, v〉, is called an inner product in V , provided
it satisfies the following properties. For all u, v and w in V and all (real or complex)
scalars k,

1. 〈u,u〉 ≥ 0. Furthermore, 〈u,u〉 = 0 if and only if u = 0.

2. 〈v,u〉 = 〈u, v〉 .

3. 〈ku, v〉 = k〈u, v〉.
4. 〈u+ v,w〉 = 〈u,w〉 + 〈v,w〉.

The norm of u is defined in terms of the inner product by

||u|| = √〈u,u〉.

Remark Notice that the properties in the preceding definition reduce to those in
Definition 4.11.3 in the case that V is a real vector space, since in such a case the
complex conjugates are unnecessary. Thus, this definition is a consistent extension of
Definition 4.11.3.

Example 4.11.11 Use properties 2 and 3 of Definition 4.11.10 to prove that in an inner product space

〈u, kv〉 = k〈u, v〉
for all vectors u, v and all scalars k.

Solution: From properties 2 and 3, we have

〈u, kv〉 = 〈kv,u〉 = k〈v,u〉 = k 〈v,u〉 = k 〈u, v〉.
Notice that in the particular case of a real vector space, the foregoing result reduces to

〈u, kv〉 = k〈u, v〉,
since in such a case the scalars are real numbers. �

Exercises for 4.11

Key Terms
Inner product, Axioms of an inner product, Real (com-
plex) inner product space, Norm, Angle, Cauchy-Schwarz
inequality.

Skills

• Know the four inner product space axioms.

• Be able to check whether or not a proposed inner prod-
uct on a vector spaceV satisfies the inner product space
axioms.

• Be able to compute the inner product of two vectors
in an inner product space.

• Be able to find the norm of a vector in an inner product
space.

• Be able to find the angle between two vectors in an
inner product space.

True-False Review
For Questions 1–7, decide if the given statement is true or
false, and give a brief justification for your answer. If true,
you can quote a relevant definition or theorem from the text.
If false, provide an example, illustration, or brief explanation
of why the statement is false.
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1. If v and w are linearly independent vectors in an inner
product space V , then 〈v,w〉 = 0.

2. In any inner product space V , we have

〈kv, kw〉 = k〈v,w〉.

3. If 〈v1,w〉 = 〈v2,w〉 = 0 in an inner product space V ,
then

〈c1v1 + c2v2,w〉 = 0.

4. In any inner product space V , 〈x + y, x − y〉 < 0 if
and only if ||x|| < ||y||.

5. In any vector space V , there is at most one valid inner
product 〈 , 〉 that can be defined on V .

6. The angle between the vectors v and w in an inner
product space V is the same as the angle between the
vectors −2v and −2w.

7. Ifp(x) = a0+a1x+a2x
2 and q(x) = b0+b1x+b2x

2,
then we can define an inner product onP2 via 〈p, q〉 =
a0b0.

Problems
1. Use the standard inner product in R

4 to determine
the angle between the vectors v = (1, 3,−1, 4) and
w = (−1, 1,−2, 1).

2. If f (x) = sin x and g(x) = x on [0, π], use the func-
tion inner product defined in the text to determine the
angle between f and g.

3. If v = (2+i, 3−2i, 4+i) and w = (−1+i, 1−3i, 3−
i), use the standard inner product in C

3 to determine,
〈v,w〉, ||v||, and ||w||.

4. Let

A =
[
a11 a12
a21 a22

]
, B =

[
b11 b12
b21 b22

]
be vectors in M2(R). Show that the mapping

〈A,B〉 = a11b11 + a12b12 + a21b21 + a22b22
(4.11.9)

defines an inner product in M2(R).

5. Referring to A and B in the previous problem, show
that the mapping

〈A,B〉 = a11b22 + a12b21 + a21b12 + a22b11

does not define a valid inner product on M2(R).

For Problems 6–7, use the inner product (4.11.9) to deter-
mine 〈A,B〉, ||A||, and ||B||.

6. A =
[

2 −1
3 5

]
, B =

[
3 1
−1 2

]
.

7. A =
[

3 2
−2 4

]
, B =

[
1 1
−2 1

]
.

8. Let p1(x) = a + bx and p2(x) = c + dx be vectors
in P1. Determine a mapping 〈p1, p2〉 that defines an
inner product on P1.

Consider the vector space R
2. Define the mapping 〈 , 〉 by

〈v,w〉 = 2v1w1 + v1w2 + v2w1 + 2v2w2
(4.11.10)

for all vectors v = (v1, v2) and w = (w1, w2) in R
2. This

mapping is required for Problems 9–12.

9. Verify that Equation (4.11.10) defines an inner product
on R

2.

For Problems 10–12, determine the inner product of the given
vectors using (a) the inner product (4.11.10), (b) the standard
inner product in R

2.

10. v = (1, 0),w = (−1, 2).

11. v = (2,−1),w = (3, 6).

12. v = (1,−2),w = (2, 1).

13. Consider the vector space R
2. Define the mapping 〈 , 〉

by

〈v,w〉 = v1w1 − v2w2, (4.11.11)

for all vectors v = (v1, v2) and w = (w1, w2). Verify
that all of the properties in Definition 4.11.3 except (1)
are satisfied by (4.11.11).

The mapping (4.11.11) is called a pseudo-inner product in
R

2 and, when generalized to R
4, is of fundamental impor-

tance in Einstein’s special relativity theory.

14. Using Equation (4.11.11), determine all nonzero vec-
tors satisfying 〈v, v〉 = 0. Such vectors are called null
vectors.

15. Using Equation (4.11.11), determine all vectors sat-
isfying 〈v, v〉 < 0. Such vectors are called timelike
vectors.
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16. Using Equation (4.11.11), determine all vectors sat-
isfying 〈v, v〉 > 0. Such vectors are called spacelike
vectors.

17. Make a sketch of R
2 and indicate the position of the

null, timelike, and spacelike vectors.

18. Consider the vector space R
n, and let v =

(v1, v2, . . . , vn) and w = (w1, w2, . . . , wn) be vec-
tors in R

n. Show that the mapping 〈, 〉 defined by

〈v,w〉 = k1v1w1 + k2v2w2 + · · · + knvnwn
is a valid inner product on R

n if and only if the con-
stants k1, k2, . . . , kn are all positive.

19. Prove from the inner product axioms that, in any inner
product space V , 〈v, 0〉 = 0 for all v in V .

20. Let V be a real inner product space.

(a) Prove that for all v,w ∈ V ,

||v + w||2 = ||v||2 + 2〈v,w〉 + ||w||2.

[Hint: ||v + w||2 = 〈v + w, v + w〉.]
(b) Two vectors v and w in an inner product space

V are called orthogonal if 〈v,w〉 = 0. Use (a)
to prove the general Pythagorean theorem: If v
and w are orthogonal in an inner product space
V , then

||v + w||2 = ||v||2 + ||w||2.

(c) Prove that for all v,w in V ,

(i) ||v + w||2 − ||v − w||2 = 4〈v,w〉.
(ii) ||v+w||2 + ||v−w||2 = 2(||v||2 + ||w||2).

21. Let V be a complex inner product space. Prove that
for all v,w in V ,

||v + w||2 = ||v||2 + 2Re(〈v,w〉)+ ||v||2,

where Re denotes the real part of a complex number.

4.12 Orthogonal Sets of Vectors and the Gram-Schmidt Process

The discussion in the previous section has shown how an inner product can be used
to define the angle between two nonzero vectors. In particular, if the inner product of
two nonzero vectors is zero, then the angle between those two vectors is π/2 radians,
and therefore it is natural to call such vectors orthogonal (perpendicular). The following
definition extends the idea of orthogonality into an arbitrary inner product space.

DEFINITION 4.12.1

Let V be an inner product space.

1. Two vectors u and v in V are said to be orthogonal if 〈u, v〉 = 0.

2. A set of nonzero vectors {v1, v2, . . . , vk} in V is called an orthogonal set
of vectors if

〈vi , vj 〉 = 0, whenever i �= j.
(That is, every vector is orthogonal to every other vector in the set.)

3. A vector v in V is called a unit vector if ||v|| = 1.

4. An orthogonal set of unit vectors is called an orthonormal set of vectors.
Thus, {v1, v2, . . . , vk} in V is an orthonormal set if and only if

(a) 〈vi , vj 〉 = 0 whenever i �= j .

(b) 〈vi , vi〉 = 1 for all i = 1, 2, . . . , k.


