Formulas for Applied Problems with Exponential or Logarithmic Formulas

Radioactive Decay Formula: $A=A_{0} 2^{-t / h}$ or $A=A_{0} 2^{-\frac{t}{h}}$ where A is the final amount, A_{0} is the initial amount present at time $0, t$ is the time, and h is the half-life of the material.

Population Growth: $P=P_{0} e^{k t}$ where P is the current population, P_{0} is the initial population at time $0, t$ is time in years, and k is the growth rate.

Light Intensity: $I=I_{0} k^{x}$ where I is the intensity of light (in lumens) at a distance of x meters below the surface of water and I_{0} is the intensity of light above the water and k is a constant that depends on the clarity of the water.
pH formula: $p H=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$where $p H$ is the number representing the acidity or alkalinity of a solution and $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]$is the hydronium ion concentration in moles per liter. (A pH of 7 is neutral, less than $7(0-7)$ is acidic with the smaller the number the more acidic, and more than 7 (7-14) is alkaline with the greater the number the more alkaline.)

Richter Scale: $R=\log \left(\frac{A}{P}\right)$ where R is the Richter scale measurement, A is the amplitude measured in micrometers, and P is the period or the time of one oscillation in seconds on the surface of the earth.

Decibel Voltage Gain: $d b=20 \log \left(\frac{E_{o}}{E_{I}}\right)$ where $d b$ is the decibel voltage gain, E_{0} is the output voltage of a device and E_{I} is the input voltage.

Decibel Level of Sound: $D=10 \log \left(\frac{I}{I_{0}}\right)$ where D is the decibel level, I is the intensity level, and I_{0} is the threshold sound intensity (a very faint sound).

Population Doubling Time: $t=\frac{\ln 2}{r}$ where t is the time for a population to double and r is the growth rate as a decimal.

