Formula Sheet for the Final Exam

- **1. Circle**: $(x-h)^2 + (y-k)^2 = r^2$
- **2. Parabola** (Quadratic function): $y = f(x) = a(x-h)^2 + k$ $h = -\frac{b}{2a}$, k = f(h) or $k = c \frac{b^2}{4a}$ $f(x) = ax^2 + bx + c$
- 3. Distance formula: $d = \sqrt{(x_2 x_1)^2 + (y_2 y_1)^2}$
- 4. Quadratic formula: $x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$

For the following formulas: S is future value, P is present value, r is the annual interest rate, k is the number of compounding periods in a year, t is time in years, A is the amount of money, and R is the amount of payment; with the formula for the periodic interest rate $i = \frac{r}{k}$.

- **5. Future Value** of an Investment with **continuously compounded** interest: $S = Pe^n$ (The amount at the end of an investment when an amount *P* is allowed to grow with interest compounded continuously.)
- **6. Future Value** of an Investment: $S = P(1+i)^{kt}$ (The amount at the end of an investment when an amount *P* is allowed to grow.)
- 7. Present Value of an Investment: $P = S(1+i)^{-kt}$ (The amount that must be invested now to provide for a future value.)
- **8. Effective Rate of Interest**: $E = (1+i)^k 1$ (The effective rate for an account.)
- **9. Future Value** of an Annuity: $S = R \left[\frac{(1+i)^{kt} 1}{i} \right]$

(The amount at the end for an ordinary annuity with regular payments.)

10. Present Value of an Annuity: $P = R \left[\frac{1 - (1+i)^{-kt}}{i} \right]$

(The present value of an ordinary annuity with regular payments.)

11. 'Sinking Fund' Payment for an Annuity: $R = \frac{Si}{(1+i)^{kt}-1}$

(The amount of a payment that will provide a future value of an ordinary annuity.)

12. Amortization Formula (Installment Payments): $R = A \left[\frac{i}{1 - (1 + i)^{-kt}} \right]$

(The amount of an installment payment when the amount borrowed is A.)