1) A person's BMI (body mass index) varies directly as an individual's weight in pounds and inversely as the square of the individual's height in inches. A person who weighs 118 pounds and is 64 inches tall has a BMI of approximately 20.0. Find the approximate BMI of a person who weighs 195 pounds and is 71 inches tall. Round to the nearest whole number. Hint: Round the value of k to the nearest whole number.

A
 BMI = 25
 BMI =
$$\frac{kw}{h^2}$$
 BMI = $\frac{694w}{h^2}$

 B
 BMI = 27
 $20.0 = \frac{k(118)}{64^2}$
 BMI = $\frac{694(195)}{71^2}$

 D
 BMI = 26
 $20 = \frac{118k}{4096}$
 BMI = $\frac{135330}{5041}$

 Z
 $20(4096) = 118k$
 $81920 = 118k$
 $694 = k$

Given the functions f(x) = 2x + 6 and $g(x) = \frac{1}{2}x - 3$, which statement(s) 2)

Ι

is(are) **true**?

I The domain of
$$g(x) = (-\infty, 2) \cup (2, \infty)$$

II $(f \circ g)(x) = x$
III $(g - f)(x) = -\frac{3}{2}x - 9$

I, II, and III Α

III only В

С II and III only

D I and III only

Ε II only

Any number can replace x in the function g(x). The domain is all numbers $(-\infty, \infty)$. I is false. Π

$$(f \circ g)(x) = f\left(\frac{1}{2}x - 3\right)$$
$$= 2\left(\frac{1}{2}x - 3\right) + 6 \qquad \text{II is true.}$$
$$= x - 6 + 6 = x$$
$$\text{III}$$
$$(g - f)(x) = \left(\frac{1}{2}x - 3\right) - (2x + 6)$$
$$= \frac{1}{2}x - 3 - 2x - 6 \qquad \text{III is true.}$$
$$= -\frac{3}{2}x - 9$$

3) Given $f(x) = x^2 - 2$ and $g(x) = \sqrt{x+5}$, find $(f \circ g)(x)$. A $(f \circ g)(x) = x+3$ B $(f \circ g)(x) = x-2$ $(f \circ g)(x) = f(g(x))$ $= f(\sqrt{x+5})$

D	$(j \otimes)(m) =$	$-J(\sqrt{x+3})$
С	$(f \circ g)(x) = \sqrt{x^2 + 3}$	$=(\sqrt{x+5})^2-2$
D	$(f \circ g)(x) = x + \sqrt{3}$	= x + 5 - 2
Ε	$(f \circ g)(x) = x^2 + 10x + 23$	= x + 3

4) Find the inverse function of *f*, if
$$f(x) = \frac{2x-1}{x-2}$$
.

	x-2	Switch the <i>x</i> and the <i>y</i> .
A	$f^{-1}(x) = \frac{x^2}{2x - 1}$	$x = \frac{2y-1}{x-2}$ Multiply both sides by denominator.
В	$f^{-1}(x) = \frac{2x+1}{x+2}$	y-2 $x(y-2) = 2y-1$
С	$f^{-1}(x) = \frac{2x-1}{x}$	xy - 2x = 2y - 1 $xy - 2y = 2x - 1$
D	$f^{-1}(x) = \frac{x}{2x - 1}$	y(x-2) = 2x-1 2x-1 2x-1
Ε	$f^{-1}(x) = \frac{2x - 1}{x - 2}$	$y = \frac{2x}{x-2}$ $f^{-1}(x) = \frac{2x}{x-2}$

5) Fill in the blanks: The graph of $f(x) = 2^x$ goes through the point _____ and the graph of $g(x) = \log_2 x$ goes through the point _____. Hint: Make tables of ordered pairs.

		g(x	x) is the ir	verse	e of $f(x)$.	Reverse ordered pairs.
A	(-1,2), (16,4)	j	f(x)	8	g(x)	
В	$\left(-1,\frac{1}{2}\right)$, (4,16)	$\frac{x}{0}$	f(x)	$\frac{x}{1}$	g(x)	
С	(1,2), (4,16)	0 1	2	1 2	0	(1)
D	$\left(-1,\frac{1}{2}\right),(16,4)$	-1	$\frac{1}{2}$	$\frac{1}{2}$	-1	$\left(-1,\frac{1}{2}\right)$ (16,4)
Ε	$(1,\frac{1}{2}), (16,-4)$	2	4	4	2	
	(2)	3	8	8	3	
		4	16	16	4	
		1			I	

- 6) Rebecca bought a computer, monitor, and scanner costing a total of \$875 (including all taxes and fees). Full payment is deferred for two years. She will be paying 3.8% annual interest **compounded continuously**. How much does Rebecca owe at the end of the 2 years? Round to the nearest cent. Assume she makes no payments until the payment at the end of the two years.
 - A \$944.09
 - *B* \$941.22
 - *C* \$943.42
 - *D* \$944.98
 - *E* \$943.75

 $A = Pe^{rt}$ $A = 875e^{(0.038)(2)}$ $A = 875e^{0.076}$ A = 875(1.078962574) A = \$944.09

7) Which logarithm statement is **false**?

 $A \qquad \log_{\frac{4}{3}} \left(\frac{9}{16}\right) = -2$ $B \qquad \log_{4} \left(\frac{1}{16}\right) = -4$ $C \qquad \ln(e^{6}) = 6$ $D \qquad \log 0.01 = -2$ $E \qquad \log_{3} \left(\frac{1}{27}\right) = -3$

Convert each to exponential form.

$$\left(\frac{4}{3}\right)^{-2} = \frac{9}{16} \text{ true}$$

$$4^{-4} = \frac{1}{4^4} = \frac{1}{256} \text{ false}$$
Using rule $\log_b b^x = x$, $\ln e^6 = 6$ true
 $10^{-2} = \frac{1}{10^2} = \frac{1}{100} = 0.01$ true
 $3^{-3} = \frac{1}{3^3} = \frac{1}{27}$ true

- 8) The percentage of adult height attained by a girl who is x years old can be modeled by $P(x) = 62 + 35 \log(x-4)$. Which statement describes the percentage of her adult height for a girl of age 10? Round to the nearest tenth of a percent.
 - *A* She has attained 89.2% of her adult height.
 - *B* She has attained 97.0% of her adult height.
 - C She has attained 86.2% of her adult height.
 - *D* She has attained 77.8% of her adult height.
 - E She has attained 82.3% of her adult height.

 $P(x) = 62 + 35 \log(x - 4)$ $P(10) = 62 + 35 \log(10 - 4)$ $P(10) = 62 + 35 \log 6$ P(10) = 62 + 35(0.77815125) P(10) = 62 + 27.23529376P(10) = 89.2% 9) Solve this exponential equation by expressing each side as a power of the same base.

	$8^{2x-5} = 2^{4+x}$	$8^{2x-5} = 2^{4+x} \qquad 8 = 2^3$
A	$x=\frac{9}{7}$	$(2^{3})^{2x-5} = 2^{4+x}$ 3(2x-5) = 4 + x
В	$5 \\ x = 9$	6x - 15 = 4 + x $5x = 19$
С	$x = \frac{19}{5}$	$x = \frac{19}{5}$
D	x = 8	5
Ε	$x = \frac{19}{7}$	

10) Use the properties of logarithms to expand the logarithm below. Simplify where possible. Assume the values of x and y are positive.

$$\log\left(\frac{100x^2}{y}\right)$$

$$A \quad \frac{2\log x}{\log y}$$

$$B \quad 2\log x - \frac{1}{2}\log y$$

$$C \quad 4 + 2\log x - \log y$$

$$B \quad 2 + 2\log x - \log y$$

$$E \quad \log 10 + 2\log x - \log y$$

11) Solve: $\log x + \log(x - 21) = 2$

A

$$x = -4, 25$$
 $\log x + \log(x - 21) = 2$
 $x = 25$
 $x = -4$

 B
 $x = 25$
 $\log[x(x - 21)] = 2$
 Only 25 checks.

 C
 $x = \frac{23}{2}$
 $\log(x^2 - 21x) = 2$
 The -4 makes a negative

 D
 $x = \frac{21}{2} + \frac{\sqrt{449}}{2}$
 $0 = x^2 - 21x$
 value in an argument.

 E
 No solution
 $0 = (x - 25)(x + 4)$
 $x - 25 = 0$
 $x + 4 = 0$
 $x = 25$
 $x = -4$
 $x = 25$
 $x = -4$

v = 2x + 4

Solve this system of equations. What is the value of the y? 12)

Α	y = -3	$\begin{cases} 3x + 5y = -19 \end{cases}$
В	y = 0	
С	y = 10	$\begin{cases} y = 2x + 4 \\ x = 5 \end{cases}$ It is easy to use substitution.
D	y = -2	(3x+5y=-19)
Ε	None of the above.	$3x + 5(2x + 4) = -19 \qquad y = 2(-3) + 4$
		3x + 10x + 20 = -19 $y = -2$
		13x = -39
		x = -3

A restaurant with 20 tables only has 4-seat tables and 6-seat tables. If all seats are 13) full, the restaurant has 96 customers seated. Let x = the number of 4-seat tables and y = the number of 6-seat tables. Which system of equations could be used to find *x* and *y*?

A	$\begin{cases} x+y=20\\ 6x+4y=96 \end{cases}$	ſ
В	$\begin{cases} x + y = 96 \\ 6x + 4y = 20 \end{cases}$	4
С	$\begin{cases} x + y = 20\\ 4x + 6y = 96 \end{cases}$	
D	$\begin{cases} x+y=96\\ 4x+6y=20 \end{cases}$	
Ε	None of the above.	

The total number of tables is 20. x + y = 20(# of 4 seat tables) + 6(number of 6 seat tables) =number of seats 4x + 6y = 96x + y = 204x + 6y = 96

14) What is the radius of the circle with equation below?

$$x^{2} + y^{2} - 8x + 6y - 24 = 0$$

$$A \qquad r = 2\sqrt{6}$$

$$B \qquad r = \sqrt{38}$$

$$C \qquad r = \sqrt{74}$$

$$D \qquad r = 2\sqrt{13}$$

$$E \qquad r = 7$$

 $x^{2} + y^{2} - 8x + 6y - 24 = 0$ (x² - 8x) + (y² + 6y) = 24 (x² - 8x + 16) + (y² + 6y + 9) = 24 + 16 + 9 (x - 4)² + (y + 3)² = 49 *radius* : $\sqrt{49}$ or 7

- 15) Which of the following quadratic functions (parabolas) matches this information? Opens downward, Vertex: (-2,-3)
 - $A \qquad f(x) = -2(x+2)^2 + 3$
 - $B \qquad g(x) = -x^2 6x 11$
 - $C \qquad p(x) = 3(x+2)^2 3$

$$D \qquad r(x) = -4x^2 - 16x - 19$$

$$E \qquad h(x) = -\frac{1}{2}(x+3)^2 - 2$$

The 'a' value must be negative. Find the vertex of each function. $f(x) = -2(x+2)^2 + 3$ opens down, V(-2,3) NO $g(x) = -x^2 - 6x - 11$ opens down, $h = \frac{-(-6)}{2(-1)} = 3$ k = -9 - 6(3) - 11 = -38 V(3, -38) NO $p(x) = 3(x+2)^2 - 3$ opens up NO $r(x) = -4x^2 - 16x - 19$ opens down, $h = \frac{-(-16)}{2(-4)} = \frac{16}{-8} = -2$ k = -4(4) - 16(-2) - 19 = -3 V(-2, -3) YES $h(x) = -\frac{1}{2}(x+3)^2 - 2$ opens down, V(-3, -2) NO