For the multiple choice questions, work will be graded as well as the answers. Show all steps neatly. For full credit, your answer must be derived from your work. If a wrong answer is chosen, partial credit may still be possible.

- 1) Given $\triangle ABC$ with $\angle C$ or $\gamma = 53.3^{\circ}$, a = 140, and c = 115; approximate the measure(s) of **any possible** $\angle B$ or β .
 - A
 $\beta = 77.4^{\circ} \text{ or } 102.6^{\circ}$

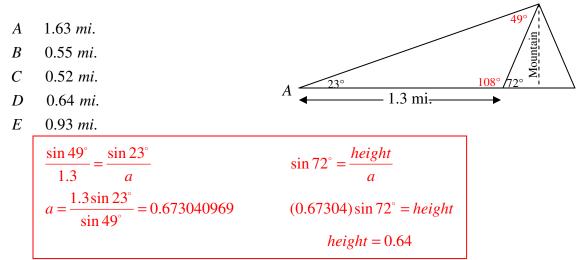
 B
 $\beta = 49.3^{\circ} \text{ or } 24.1^{\circ}$

 C
 $\beta = 9.9^{\circ} \text{ or } 63.5^{\otimes}$

 D
 $\beta = 16.8^{\circ} \text{ or } 56.6^{\circ}$

 E
 None of the above.

 $\frac{\sin 53.3^{\circ}}{115} = \frac{\sin A}{140}$ $\sin A = \frac{140 \sin 53.3^{\circ}}{115} = 0.976074697$ $A \text{ or } \alpha = 77.441549^{\circ} \text{ or } 102.55845^{\circ}$ $B \text{ or } \beta = 49.3^{\circ} \text{ or } 24.1^{\circ}$ There are two possible triangles.
- 2) An observer at point A, which is 1.3 miles from the base of a mountain, notices the angle of elevation to the peak of the mountain is 23°. The slope of the mountain from its base to the peak is 72°. (See the picture. Picture may not be to scale.) Approximate, to the nearest hundredth of a mile, the **height of the mountain**.



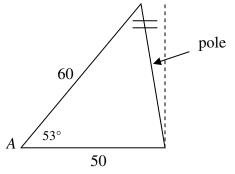
3) To the nearest tenth of a degree, approximate the measure of the **smallest** angle in a $\triangle ABC$ with a = 20, b = 18, and c = 25.

A	52.4°	The smallest angle would be across from the smallest side, $b = 18$.
В	7.9°	$b^2 = a^2 + c^2 - 2ac\cos\beta$
С	33.2°	$18^2 = 20^2 + 25^2 - 2(20)(25)\cos\beta$
D	28.0°	$324 = 400 + 625 - 1000 \cos \beta$
Ε	45.5°	$1000\cos\beta = 701$
		$\cos\beta = 0.701$
		$\beta = 45.5^{\circ}$

For free response problems, show all work or steps neatly. Circle your final answer(s).

4) A telephone pole is leaning at an angle as seen in the picture below. The distance between point *A* and the bottom of the pole is 50 feet along level ground and the distance from point *A* to the top of the telephone pole is 60 feet. If the angle of elevation from *A* to the top of the telephone pole is 53° , how long is the telephone pole? Round to the nearest tenth of a foot.

 $L^{2} = 50^{2} + 60^{2} - 2(50)(60) \cos 53^{\circ}$ $L^{2} = 6100 - 6000 \cos 53^{\circ}$ $L^{2} = 2489.10986$ L = 49.9 ft.



5) A quarterback releases a football with a speed of 45 feet per second at an angle of 33° with the horizontal. What are the components of the vector that represents this force? Approximate each to two decimal places and write using vector notation ($\langle \rangle$).

Use the formulas: $x = ||v|| \cos \theta$ and $y = ||v|| \sin \theta$ $\langle 45 \cos 33^\circ, 45 \sin 33^\circ \rangle$ $\langle 37.73, 24.51 \rangle$

6) Find a **unit vector** in the **opposite** direction as $\left\langle \frac{18}{5}, \frac{24}{5} \right\rangle$. Which statement is true? *A* The *x* component is $\frac{3}{5}$.

B The y component is
$$-\frac{3}{5}$$
.
C The y component is $-\frac{4}{5}$.
D The x component is $-\frac{5}{3}$.
E The x component is $\frac{4}{5}$.

$$||\langle \frac{18}{5}, \frac{24}{5} \rangle|| = \sqrt{\left(\frac{18}{5}\right)^2 + \left(\frac{24}{5}\right)^2} = \sqrt{\frac{324}{25} + \frac{576}{25}} = \sqrt{\frac{900}{25}} = \sqrt{36} = 6$$

$$-u = -\frac{1}{\left\|\langle \frac{18}{5}, \frac{24}{5} \rangle\right\|} \left\langle \frac{18}{5}, \frac{24}{5} \right\rangle = -\frac{1}{6} \left\langle \frac{18}{5}, \frac{24}{5} \right\rangle = \left\langle -\frac{3}{5}, -\frac{4}{5} \right\rangle$$

$$y = -\frac{4}{5}$$

7) Given vectors a = 3i - 2j and b = -6i + j, in which quadrant would vector 3a + 6b be found?

		3a + 6b = 3(3i - 2j) + 6(-6i + j)
A	QI	=(9i-6j)+(-36i+6j)
В	Q II	=-27i+0j or $-27i$
С	Q III	
D	Q IV	This vector is found on the negative <i>y</i> -axis,
Ε	None of the above.	so is not in a quadrant.

8) Which of the following vectors is orthogonal with the vector $\langle 3, -7 \rangle$?

A	$\langle 21,9 \rangle$	$a \cdot b = 0$
В	$\langle 14, -6 \rangle$	$\langle 14, -6 \rangle \cdot \langle 3, -7 \rangle = 42 + 42 = 84$ not
С	$\langle -7,3 \rangle$	$\langle -7,3 \rangle \cdot \langle 3,-7 \rangle = -21 - 21 = -42$ not
D	$\langle -21,9 \rangle$	$\langle -21, 9 \rangle \cdot \langle 3, -7 \rangle = -63 - 63 = -126 \text{ not}$
Ε	$\left\langle \frac{7}{2}, -\frac{3}{2} \right\rangle$	$\langle 21,9 \rangle \cdot \langle 3,-7 \rangle = 63 - 63 = 0 yes$ $\left\langle \frac{7}{2}, -\frac{3}{2} \right\rangle \cdot \langle 3,-7 \rangle = \frac{21}{2} + \frac{21}{2} = 21 not$

9) Find the angle between the two vectors r = -4i - 12j and s = 6i - 8j. Round to the nearest tenth of a degree.

$$r \cdot s = (-4)(6) + (-12)(-8) = -24 + 96 = 72$$
$$\|r\| = \sqrt{(-4)^2 + (-12)^2} = \sqrt{160}$$
$$\|s\| = \sqrt{6^2 + (-8)^2} = \sqrt{100} = 10$$
$$\cos\theta = \frac{72}{10\sqrt{160}} = \frac{9}{5\sqrt{10}} \approx 0.569209979$$
$$\theta = 55.3^\circ$$

Exam 3A

10) Which of the following statements is/are true about the graph of the function

$$g(x) = \frac{4x^2 - 16}{x^2 + 2x - 8}?$$
I A horizontal asymptote is $y = 4$.
II A vertical asymptotes is $x = 4$.
III An x-intercept is 2 or (2,0).

A B C	I and III only II and III only I only	$g(x) = \frac{4(x^2 - 4)}{(x + 4)(x - 2)} = \frac{4(x + 2)(x - 2)}{(x + 4)(x - 2)}$ g(x) is the same as $f(x) = \frac{4(x + 2)}{(x + 4)}$ except for a hole when $x = 2$
D	I, II, and III	(x+4)
Ε	III only	$\frac{4x}{x}$ horizontal asymptote is $y = 4$ I is true. $x + 4 = 0 \rightarrow x = -4$ for vertical asymptote II is false. Numerator = 0 $x + 2 = 0 \rightarrow x = -2$ (-2,0) is x-intercept. III is false.

11) Find a rational function that satisfies these conditions. Use function notation, f(x), when writing your answer. You may leave the numerator and denominator factored, if you wish.

vertical asymptotes: x = 3, x = -2horizontal asymptote: y = 0x-intercept: 2 or (2, 0) f(1) = 1

Vertical asymptotes give factors of the denominator. The *x*-intercept gives a factor of the numerator. The horizontal asymptote means the leading exponent of numerator is less than the leading exponent of denominator. We do not know if there is a coefficient in the numerator other than 1. Call it *a*.

$$f(x) = \frac{a(x-2)}{(x-3)(x+2)}$$

$$f(1) = 1 \rightarrow 1 = \frac{a(1-2)}{(1-3)(1+2)} = \frac{-a}{(-2)(3)}$$

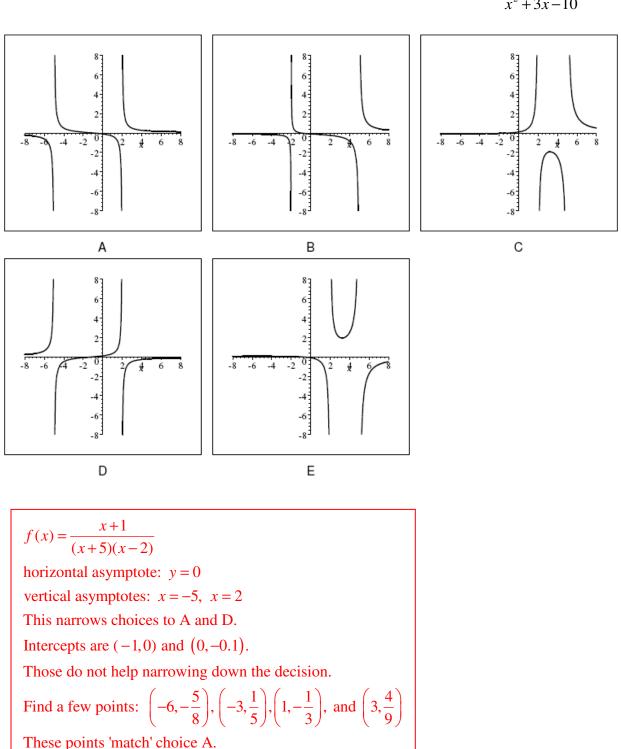
$$1 = \frac{-a}{-6} \rightarrow a = 6$$

$$f(x) = \frac{6(x-2)}{(x-3)(x+2)}$$

12) Find the smallest **positive angle** θ from the positive *x*-axis to the vector *v* that is represented by $\langle 12, -5 \rangle$. Round to the nearest tenth of a degree.

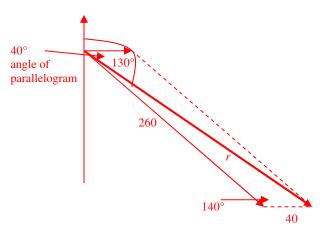
 $\theta \text{ is in QIV.}$ $\tan \theta = \frac{-5}{12} \approx 0.41666667$ $\theta_R = 22.6199^\circ$ $\theta = 360^\circ - 22.6^\circ = 337.4^\circ$

MA 15400



13) Which of the following graphs best approximates the graph for $f(x) = \frac{x+1}{x^2+3x-10}$?

An airplane with **airspeed** of 260 miles per hour is flying in the direction 130° and a 40 miles per hour wind is blowing directly **from** the west.



14) Find the ground speed of the airplane. Round to the nearest whole number.

Method 1: $r^{2} = 260^{2} + 40^{2} - 2(260)(40) \cos 140^{\circ}$ $r^{2} = 69200 + 15933.72442$ $r^{2} = 85133.7244$ r = 291.77684 Method 2: $p = \langle 260 \cos 320^\circ, 260 \sin 320^\circ \rangle \quad (40^\circ \text{ 'short' of } 360^\circ)$ $w = \langle 40, 0 \rangle$ $r = \langle 260 \cos 320^\circ + 40, 260 \sin 320^\circ \rangle = \langle 239.17156, -169.12478 \rangle$ $\|r\| = \sqrt{(239.172^2 + (-167.125)^2} = \sqrt{85133.7248}$ $\|r\| = 291.77 \quad \text{ground speed: } 292 \text{ mph}$

15) What is the true course of the airplane? Round to the nearest degree.

```
Let \alpha = the sliver of angle from below the wind
vector to the resultant vector.
direction of true course: 90^{\circ} + \alpha
\frac{\sin \alpha}{260} = \frac{\sin 140^{\circ}}{291.77684}
\sin \alpha = \frac{260 \sin 140^{\circ}}{291.77684} = 0.572782879
\alpha = 34.945^{\circ}
true course: (90+35)^{\circ} = 125^{\circ}
```

 $\theta \text{ is in Q IV} \\ \tan \theta = \frac{-167.12478}{239.17156} = -0.698765286 \\ \theta_R = 34.9^{\circ} \\ \theta = 90^{\circ} + 35^{\circ} \\ \text{true course: } 125^{\circ} \\ \theta = 90^{\circ} + 35^{\circ} \\ \theta = 90^{\circ} + 35^{\circ}$