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1. Exam 1

1. (10 pts) Determine a lower bound for the radius of convergence of series solutions

(x2 − 4x+ 5)y′′ + (x+ 3)y′ + 4(x2 − 4x+ 5)y = 0

about x0 = 1.

2. Consider the differential equation

(x− 2)2(x+ 1)y′′ + 3(x2 + x− 6)y′ + (4x+ 1)y = 0.

(a) (8 pts) Show that x0 = 2 is a regular singular point.
(b) (7 pts) Find the indicial equation of a series solution of the form

y = φ(r, x) =
∞∑

n=0

an(r)(x− 2)r+n

and also find the exponents at the singular point x0 = 2.

3. Consider a series solution y =
∑∞

n=0 anx
n about x0 = 0 of

y′′ − xy′ − 2y = 0.

(a) (10 pts) Find the recurrence relation for an.
(b) (5 pts) Find a general formula for an.
(c) (5 pts) Find two linearly independent series solutions.

4. (15 pts) Use the Laplace transform to solve the initial value problem

y′′ − 7y′ + 12y = 0, y(0) = 1, y′(0) = 0.

5.

(a) (8 pts) Use the definition of the Laplace transform

L{f(t)} =
∫ ∞

0

e−stf(t)dt

to show that

L{eat} =
1

s− a
for s > a.

(b) (7 pts) Find the Laplace transform of

f(t) =
[
2(t− 5)2 + cos(t− 5) + 4

]
u5(t).

6. (10 pts) Find the inverse Laplace transform of

F (s) =
(s+ 1)e−7s

s2 − 6s+ 13
.

7. Consider the initial value problem

(†) φ′(t)−
∫ t

0

(t− ξ)2φ(ξ)dξ = δ(t− 3), φ(0) = 1.

(a) (8 pts) Convert the differential equation (†) to an algebraic equation in Φ(s) = L{φ(t)} (but do not solve
the equation).

(b) (7 pts) Let φ(t) be the solution of the equation (†). Evaluate the following integral∫ ∞
0

e−st(2φ(t) + sin 3t)dt.
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2. Exam 1-Solution

1. (10 pts) Determine a lower bound for the radius of convergence of series solutions

(x2 − 4x+ 5)y′′ + (x+ 3)y′ + 4(x2 − 4x+ 5)y = 0

about x0 = 1.

Solution) Note that x0 = 1 is an ordinary point and

p(x) =
x+ 3

x2 − 4x+ 5
, q(x) = 4.

The roots of x2 − 4x + 5 = 0 are 2 + i and 2 − i. The distance from x0 = 1 to the nearest root 2 + i is
√

2
(you may take 2− i as well), and so the radius of convergence of p(x) is ρp =

√
2. The radius of convergence

of q(x) is ρq =∞. Therefore, min{
√

2,∞} =
√

2 and so we find that the radius of convergence ρ of the series
solution is at least

√
2, which is a lower bound.

2. Consider the differential equation

(x− 2)2(x+ 1)y′′ + 3(x2 + x− 6)y′ + (4x+ 1)y = 0.

(a) (8 pts) Show that x0 = 2 is a regular singular point.

Solution) Clearly, x0 = 2 is a singular point because

(x− 2)2(x+ 1) = 0 =⇒ x = 2,−1.

Use x2 + x− 6 = (x− 2)(x+ 3) and compute

p0 = lim
x→2

(x− 2)p(x) = lim
x→2

(x− 2)
3(x− 2)(x+ 3)
(x− 2)2(x+ 1)

= lim
x→2

3(x+ 3)
(x+ 1)

= 5

and

q0 = lim
x→2

(x− 2)2q(x) = lim
x→2

(x− 2)2
4x+ 1

(x− 2)2(x+ 1)
= lim

x→2

4x+ 1
x+ 1

= 3.

Therefore x0 = 1 is a regular singular point.

(b) (7 pts) Find the indicial equation of a series solution of the form

y = φ(r, x) =
∞∑

n=0

an(r)(x− 2)r+n

and also find the exponents at the singular point x0 = 2.

Solution) The indicial equation is

0 = r(r − 1) + p0r + q0 = r(r − 1) + 5r + 3 =⇒ r2 + 4r + 3 = 0 =⇒ r = −1,−3

and the exponents of singularity at x0 = 2 are r = −1,−3.

3. Consider a series solution y =
∑∞

n=0 anx
n about x0 = 0 of

y′′ − xy′ − 2y = 0.

(a) (10 pts) Find the recurrence relation for an.
(b) (5 pts) Find a general formula for an.
(c) (5 pts) Find two linearly independent series solutions.

Solution) (a) Compute

y′ =
∞∑

n=1

nanx
n−1, y′′ =

∞∑
n=2

n(n− 1)anx
n−2
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and put y, y′, y′′ into the differential equation to find that

0 = y′′ − xy′ − 2y

=
∞∑

n=2

n(n− 1)anx
n−2 − x

∞∑
n=1

nanx
n−1 − 2

∞∑
n=0

anx
n

=
∞∑

n=2

n(n− 1)anx
n−2 −

∞∑
n=1

nanx
n − 2

∞∑
n=0

anx
n

Use the shifting formula n→ n+ 2
∞∑

n=2

n(n− 1)anx
n−2 =

∞∑
n=0

(n+ 2)(n+ 1)an+2x
n

to get

0 =
∞∑

n=0

(n+ 2)(n+ 1)an+2x
n −

∞∑
n=1

nanx
n − 2

∞∑
n=0

anx
n

= (2a2 − 2a0) +
∞∑

n=1

[
(n+ 2)(n+ 1)an+2 − (n+ 2)an

]
and {

a2 = a0

(n+ 2)(n+ 1)an+2 − (n+ 2)an = 0, n ≥ 1

(b) The recurrence relation can be simplified to

an+2 =
1

n+ 1
an, n ≥ 1.

Considering even and odd cases we see that

a2m =
a0

1 · 3 · 5 · · · (2m− 3) · (2m− 1)
, m ≥ 1

and

a2m+1 =
a1

2 · 4 · 6 · · · (2m− 2) · (2m)
, m ≥ 0.

(c) The general solution is

y =
∞∑

n=0

anx
n

= a0 +
∞∑

m=1

a2mx
2m +

∞∑
m=0

a2m+1x
2m+1

= a0 +
∞∑

m=1

a0

1 · 3 · 5 · · · (2m− 3) · (2m− 1)
x2m +

∞∑
m=0

a1

2 · 4 · 6 · · · (2m− 2) · (2m)
x2m+1

and so

y1(x) = 1 +
∞∑

m=1

1
1 · 3 · 5 · · · (2m− 3) · (2m− 1)

x2m

and

y2(x) =
∞∑

m=0

1
2 · 4 · 6 · · · (2m− 2) · (2m)

x2m+1

are two linearly independent solutions.

4. (15 pts) Use the Laplace transform to solve the initial value problem

y′′ − 7y′ + 12y = 0, y(0) = 1, y′(0) = 0.
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Solution) Set Y (s) = L{y(t)} and compute the Laplace transform

0 = L{y′′ − 7y′ + 12y}
=
[
s2Y (s)− sy(0)− y′(0)

]
− 7 [sY (s)− y(0)] + 12Y (s)

=
[
s2Y (s)− s

]
− 7 [sY (s)− 1] + 12Y (s)

= (s2 − 7s+ 12)Y (s)− s+ 7.

Solve for Y (s) and compute the partial fractions

Y (s) =
s+ 3

s2 − 7s+ 12
=

s− 7
(s− 3)(s− 4)

=
4

s− 3
− 3
s− 4

.

Taking the inverse Laplace transform we find that

y(t) = L−1{Y (s)} = 4L−1

{
1

s− 3

}
− 3L−1

{
1

s− 4

}
= 4e3t − 3e4t.

5.
(a) (8 pts) Use the definition of the Laplace transform

L{f(t)} =
∫ ∞

0

e−stf(t)dt

to show that

L{eat} =
1

s− a
for s > a.

Solution) By the definition

L{eat} =
∫ ∞

0

e−steatdt =
∫ ∞

0

e−(s−a)tdt = lim
A→∞

[
e−(s−a)t

−(s− a)

]A

0

= lim
A→∞

e−(s−a)A

−(s− a)
+

1
s− a

=
1

s− a

because limA→∞ e−kA = 0 for k = s− a > 0.

(b) (7 pts) Find the Laplace transform of

f(t) =
[
2(t− 5)2 + cos(t− 5) + 4

]
u5(t).

Solution) Note that
f(t) = h(t− 5)u5(t)

where

h(t) = 2t2 + cos t+ 4 =⇒ H(s) = L{h(t)} =
4
s3

+
s

s2 + 1
+

4
s
.

By the general formula

L{f(t)} = e−5sH(s) = e−5s

(
4
s3

+
s

s2 + 1
+

4
s

)
.

6. (10 pts) Find the inverse Laplace transform of

F (s) =
(s+ 1)e−7s

s2 − 6s+ 13
.

Solution) Write

F (s) =
(s+ 1)e−7s

s2 − 6s+ 13
= e−7sH(s)

where

H(s) =
(s+ 1)

s2 − 6s+ 13
=

s− 3
(s− 3)2 + 4

+ 2
2

(s− 3)2 + 4
=⇒ h(t) = L−1{H(s)} = e3t cos 2t+ 2e3t sin 2t

from s2 − 6s+ 13 = (s− 3)2 + 4. We see that

f(t) = L−1{F (s)} = L−1{e−7sH(s)} = h(t− 7)u7(t) =
[
e3(t−7) cos 2(t− 7) + 2e3(t−7) sin 2(t− 7)

]
u7(t).

7. Consider the initial value problem

(†) φ′(t)−
∫ t

0

(t− ξ)2φ(ξ)dξ = δ(t− 3), φ(0) = 1.
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(a) (8 pts) Convert the differential equation (†) to an algebraic equation in Φ(s) = L{φ(t)} (but do not solve
the equation).

Solution) Let Φ(s) = L{φ(t)}, f(t) = t2 and F (s) = L{f(t)} = 2
s3 . Note that we may rewrite the

equation (†) as follows:
φ′(t)− (f ∗ φ)(t) = δ(t− 3).

Take the Laplace transforms on both sides to see

L{φ′(t)}+L{(f ∗φ)(t)} = L{δ(t−3)} =⇒ (sΦ(s)−φ(0))−F (s)Φ(s) = e−3s =⇒
(
s− 2

s3

)
Φ(s) = 1+e−3s.

(b) (7 pts) Let φ(t) be the solution of the equation (†). Evaluate the following integral∫ ∞
0

e−st(2φ(t) + sin 3t)dt.

Solution) Note that∫ ∞
0

e−st(2φ(t) + sin 3t)dt = 2L{φ(t)}+ L{sin 3t} = 2Φ(s) +
3

s2 + 9
=

2s3(1 + e−3s)
s4 − 1

+
3

s2 + 9
because (

s− 2
s3

)
Φ(s) = 1 + e−3s =⇒ Φ(s) =

s3(1 + e−3s)
s4 − 2

from (a).


