Formula Sheet for the Final Exam

1. Circle: $(x-h)^2 + (y-k)^2 = r^2$

2. Parabola (Quadratic function):

$$y = f(x) = a(x-h)^{2} + k$$
or $f(x) = ax^{2} + bx + c$ where $h = -\frac{b}{2a}$, $k = f(h)$ or $c - \frac{b^{2}}{4a}$

3. Distance formula:
$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

4. Quadratic formula:
$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

For the following formulas: S is future value, P is present value, r is the annual interest rate, k is the number of compounding periods in a year, t is time in years, A is the amount of money, and R

is the amount of payment; with the formula for the periodic interest rate $i = \frac{r}{k}$.

- 5. Future Value of an Investment with continuously compounded interest: $S = Pe^{rt}$ (The amount at the end of an investment when an amount *P* is allowed to grow with interest compounded continuously.)
- 6. Future Value of an Investment: $S = P(1+i)^{kt}$ (The amount at the end of an investment when an amount *P* is allowed to grow.)
- 7. Present Value of an Investment: $P = S(1+i)^{-kt}$ (The amount that must be invested now to provide for a future value.)
- 8. Effective Rate of Interest: $E = (1+i)^k 1$ (The effective rate for an account.)
- **9. Future Value** of an Annuity: $S = R\left[\frac{(1+i)^{kt}-1}{i}\right]$

(The amount at the end for an ordinary annuity with regular payments.)

10. Present Value of an Annuity:
$$P = R\left[\frac{1-(1+i)^{-kt}}{i}\right]$$

(The present value of an ordinary annuity with regular payments.)

11. 'Sinking Fund' Payment for an Annuity: $R = \frac{Si}{(1+i)^{kt}-1}$

(The amount of a payment that will provide a future value of an ordinary annuity.)

12. Amortization Formula (Installment Payments): $R = A\left[\frac{i}{1-(1+i)^{-kt}}\right]$

(The amount of an installment payment when the amount borrowed is *A*.)