MA 15200 Lesson 28 Section 4.2

Remember the following information about inverse functions.

- 1. In order for a function to have an inverse, it must be one-to-one and pass a horizontal line test.
- 2. The inverse function can be found by interchanging *x* and *y* in the function's equation and solving for *y*.
- 3. If f(a) = b, then $f^{-1}(b) = a$. The domain of f is the range of f^{-1} and the range of f is the domain of f^{-1} .
- 4. The compositions $f(f^{-1}(x))$ and $f^{-1}(f(x))$ both equal x.
- 5. The graph of f^{-1} is the reflection of the graph of *f* about the line y = x.

Because an exponential function is 1-1 and passes the horizontal line test, it has an inverse. This inverse is called a logarithmic function.

I Logarithmic Functions

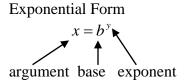
According to point 2 above, we interchange the *x* and *y* and solve for *y* to find the equation of an inverse function.

 $f(x) = b^x$ exponential function

 $x = b^y$ inverse function How do we solve for y? There is no way to do this. Therefore a new notation needs to be used to represent an inverse of an exponential function, the logarithmic function.

Definition of Logarithmic Function For x > 0 and b > 0 ($b \ne 1$) $y = \log_b x$ is equivalent to $x = b^y$ The function $f(x) = \log_b x$ is the **logarithmic function with base b**.

The equation $y = \log_b x$ is called the logarithmic form and the equation $x = b^y$ is called the exponential form. The value of y in either form is called a **logarithm.** Note: The logarithm is an exponent.



Logarithmic Form

 $v = \log_{k} x$ exponent base argument

Ex 1: Convert each exponential form to logarithmic form and each logarithmic form to exponential form.

-	$3^4 = 81$	h) n	$n^{rp} = x + 4$
b)	$\left(\frac{3}{4}\right)^2 = \frac{9}{16}$	<i>i</i>) (2	$2a)^{y+7} = p^2$
<i>c</i>)	$25^{\frac{1}{2}} = 5$		
<i>d</i>)	$8^{-2} = \frac{1}{64}$		
<i>e</i>)	$\log_2 32 = 5$		
f)	$\log_{\frac{1}{2}}\left(\frac{1}{8}\right) = 3$	j) lo	$\log_q(2mn) = 12$
<i>g</i>)	$\log_5 \sqrt{5} = \frac{1}{2}$	k) lo	$\log_{x+3} 200 = rs$

IIFinding logarithmsRemember:A logarithm is an exponent.

Ex 2:	Find	each logarithm.
	<i>a</i>)	$\log_{10} 100,000$

- *b*) $\log_3 27$
- $\log_{20} 1$ *c*)
- *d*) $\log_{15} 15$

$$e) \quad \log_{12}\frac{1}{144}$$

$$f) \quad \log_4 64$$

$$g) \quad \log_{\frac{1}{2}} 32$$

$$h) \quad \log_{3} 81$$

III Basic Logarithmic Properties

1.	$\log_b b = 1$	Since the first power of any base equals that base, this is
		reasonable.
2.	$\log_b 1 = 0$	Since any base to the zero power is 1, this is reasonable.

The exponential function $f(x) = b^x$ or $y = b^x$ and the logarithmic function $f^{-1}(x) = \log_b x$ or $y = \log_b x$ are inverses. $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$

This leads to 2 more basic logarithmic properties.

3. $\log_b b^x = x$ This is a composition function where $f(x) = b^x$ and $f^{-1}(x) = \log_b x$. $f^{-1}(f(x)) = f^{-1}(b^x) = \log_b b^x = x$ (the exponent) 4. $b^{\log_b x} = x$ This is a composition function where $f(x) = b^x$ and $f^{-1}(x) = \log_b x$. $f(f^{-1}(x)) = f(\log_b x) = b^{\log_b x} = x$ (the number or argument)

- Ex 3: Simplify using the basic properties of logarithms. a) $\log_4 1 =$
 - *b*) $\log_3 3 =$
 - c) $12^{\log_{12}4} =$

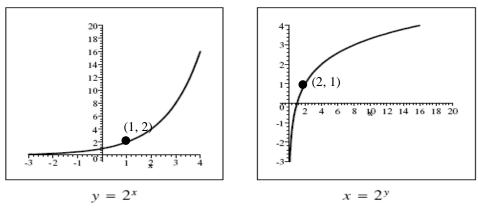
d)
$$\log_{10} 10^5 =$$

- <u>Ex 4:</u> Simplify, if possible. *a*) $\log_{(-4)} 1 =$
 - *b*) $\log(-100) =$

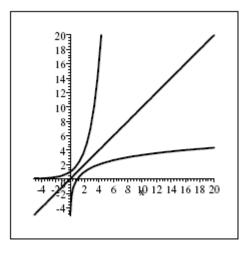
Remember that bases must be positive and the argument values (the numbers) must be positive.

IV Graphs of Logarithmic Functions

Below is a graph of $y = 2^x$ and its inverse, $x = 2^y$.



If you imagine the line y = x, you can see the symmetry about that line. Below are both graphs on the same coordinate system along with y = x.



Characteristics of a logarithmic Graph:

The **inverse of this function**, $x = b^y$, has a graph with the following characteristics.

- 1. The *x*-intercept is (1, 0).
- 2. The graph still is increasing if b > 1, decreasing if 0 < b < 1.
- 3. The **domain** is all positive numbers, so the graph is to the right of the *y*-axis. (The range is all real numbers.)
- 4. The *y*-axis is an asymptote.

V Common Logarithms

A logarithmic function with base 10 is called the **common logarithmic function**. Such a function is usually written without the 10 as the base.

log x is equivalent to $\log_{10} x$ A calculator with a key \log can approximate common logarithms.

Put the number (argument) in the calculator, press the common log key.

Ex 5: Find each common logarithm without a calculator. a) $\log 1000 =$

b)
$$\log \frac{1}{100} =$$

c)
$$\log 0.001 =$$

<u>Ex 6:</u> Use a calculator to approximate each common logarithm. Round to 4 decimal places.

a)
$$\log 0.025$$

b) log 43.8

Using the basic properties with base 10, we get the following properties.

- 1. $\log 10 = 1$
- 2. $\log 1 = 0$
- 3. $\log 10^x = x$
- $4. 10^{\log x} = x$

VI Natural Logarithms

A logarithm function with base *e* is called the **natural logarithmic function.** Such a function is usually written using ln symbol rather than log symbol and no base shown. The symbol ln means natural logarithm.

 $\ln x$ is equivalent to $\log_e x$

A calculator with a key ln can approximate natural logarithms.

Put the number (argument) in the calculator, press the natural log key.

- $\underline{Ex 7:}$ Use a calculator to approximate each natural logarithm. Round to 4 decimal places.
 - a) $\ln 0.988$
 - *b*) ln 2008

Using the basic properties with base e, we get the following properties.

- 1. $\ln e = 1$
- 2. $\ln 1 = 0$
- 3. $\ln e^x = x$
- 4. $e^{\ln x} = x$

VII Modeling with logarithmic functions

The function $f(x) = 29 + 48.8\log(x+1)$ gives the percentage of adult height attained by a boy who is x years old.

Ex 8: Approximately what percentage of his adult height has a boy of age 11 acheived? (Notice: This model uses a common log.) Round to the nearest tenth of a percent.

The function $f(x) = 13.4 \ln x - 11.6$ models the temperature increase in degrees Fahrenheit after x minutes in an enclosed vehicle when the outside temperature is from 72° to 96° .

 $\underline{Ex 9}$: Use the function above to approximate the temperature increase after 45 minutes. Round to the nearest tenth of a degree.