MA 15200 Lesson 28 Section 4.2

Remember the following information about inverse functions.

1. In order for a function to have an inverse, it must be one-to-one and pass a horizontal line test.
2. The inverse function can be found by interchanging x and y in the function's equation and solving for y.
3. If $f(a)=b$, then $f^{-1}(b)=a$. The domain of f is the range of f^{-1} and the range of f is the domain of f^{-1}.
4. The compositions $f\left(f^{-1}(x)\right)$ and $f^{-1}(f(x))$ both equal x.
5. The graph of f^{-1} is the reflection of the graph of f about the line $y=x$.

Because an exponential function is 1-1 and passes the horizontal line test, it has an inverse. This inverse is called a logarithmic function.

I Logarithmic Functions

According to point 2 above, we interchange the x and y and solve for y to find the equation of an inverse function.

$$
f(x)=b^{x} \text { exponential function }
$$

$x=b^{y}$ inverse function How do we solve for y ? There is no way to do this. Therefore a new notation needs to be used to represent an inverse of an exponential function, the logarithmic function.

Definition of Logarithmic Function

For $x>0$ and $b>0(b \neq 1)$

$$
y=\log _{b} x \text { is equivalent to } x=b^{y}
$$

The function $f(x)=\log _{b} x$ is the logarithmic function with base \boldsymbol{b}.

The equation $y=\log _{b} x$ is called the logarithmic form and the equation $x=b^{y}$ is called the exponential form. The value of y in either form is called a logarithm. Note: The logarithm is an exponent.

Logarithmic Form

Ex 1: Convert each exponential form to logarithmic form and each logarithmic form to exponential form.
a) $3^{4}=81$
h) $m^{r p}=x+4$
b) $\left(\frac{3}{4}\right)^{2}=\frac{9}{16}$
i) $(2 a)^{y+7}=p^{2}$
c) $25^{\frac{1}{2}}=5$
d) $8^{-2}=\frac{1}{64}$
e) $\log _{2} 32=5$
f) $\quad \log _{\frac{1}{2}}\left(\frac{1}{8}\right)=3$
g) $\log _{5} \sqrt{5}=\frac{1}{2}$
j) $\log _{q}(2 m n)=12$
k) $\log _{x+3} 200=r s$

II Finding logarithms

Remember: A logarithm is an exponent.
Ex 2: Find each logarithm.
a) $\log _{10} 100,000$
b) $\quad \log _{3} 27$
c) $\quad \log _{20} 1$
d) $\quad \log _{15} 15$
e) $\quad \log _{12} \frac{1}{144}$
f) $\quad \log _{4} 64$
g) $\quad \log _{\frac{1}{2}} 32$
h) $\quad \log _{3} 81$

III Basic Logarithmic Properties

1. $\log _{b} b=1 \quad$ Since the first power of any base equals that base, this is reasonable.
2. $\quad \log _{b} 1=0 \quad$ Since any base to the zero power is 1 , this is reasonable.

The exponential function $f(x)=b^{x}$ or $y=b^{x}$ and the logarithmic function $f^{-1}(x)=\log _{b} x$ or $y=\log _{b} x$ are inverses.
$f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$
This leads to 2 more basic logarithmic properties.
3. $\quad \log _{b} b^{x}=x \quad$ This is a composition function where $f(x)=b^{x}$ and $f^{-1}(x)=\log _{b} x . f^{-1}(f(x))=f^{-1}\left(b^{x}\right)=\log _{b} b^{x}=x$ (the exponent)
4. $\quad b^{\log _{b} x}=x \quad$ This is a composition function where
$f(x)=b^{x}$ and $f^{-1}(x)=\log _{b} x . \quad f\left(f^{-1}(x)\right)=f\left(\log _{b} x\right)=b^{\log _{b} x}=x$ (the number or argument)

Ex 3: Simplify using the basic properties of logarithms.
a) $\log _{4} 1=$
b) $\quad \log _{3} 3=$
c) $\quad 12^{\log _{12} 4}=$
d) $\quad \log _{10} 10^{5}=$

Ex 4: Simplify, if possible.
a) $\log _{(-4)} 1=$

Remember that bases must be positive and the argument values (the numbers) must be positive.
b) $\log (-100)=$

IV Graphs of Logarithmic Functions

Below is a graph of $y=2^{x}$ and its inverse, $x=2^{y}$.

$y=2^{x}$

$$
x=2^{y}
$$

If you imagine the line $y=x$, you can see the symmetry about that line.
Below are both graphs on the same coordinate system along with $y=x$.

Characteristics of a logarithmic Graph:
The inverse of this function, $x=b^{y}$, has a graph with the following characteristics.

1. The x-intercept is $(1,0)$.
2. The graph still is increasing if $b>1$, decreasing if $0<b<1$.
3. The domain is all positive numbers, so the graph is to the right of the y-axis. (The range is all real numbers.)
4. The \boldsymbol{y}-axis is an asymptote.

V Common Logarithms

A logarithmic function with base 10 is called the common logarithmic function. Such a function is usually written without the 10 as the base.
$\log x$ is equivalent to $\log _{10} x$
A calculator with a key \log can approximate common logarithms.
Put the number (argument) in the calculator, press the common log key.
Ex 5: Find each common logarithm without a calculator.
a) $\log 1000=$
b) $\quad \log \frac{1}{100}=$
c) $\quad \log 0.001=$

Ex 6: Use a calculator to approximate each common logarithm. Round to 4 decimal places.
a) $\log 0.025$
b) $\log 43.8$

Using the basic properties with base 10 , we get the following properties.

1. $\log 10=1$
2. $\quad \log 1=0$
3. $\quad \log 10^{x}=x$
4. $10^{\log x}=x$

VI Natural Logarithms

A logarithm function with base e is called the natural logarithmic function. Such a function is usually written using ln symbol rather than log symbol and no base shown. The symbol \ln means natural logarithm.
$\ln x$ is equivalent to $\log _{e} x$
A calculator with a key $\ln \quad$ can approximate natural logarithms.
Put the number (argument) in the calculator, press the natural log key.

Ex 7: Use a calculator to approximate each natural logarithm. Round to 4 decimal places.
a) $\ln 0.988$
b) $\ln 2008$

Using the basic properties with base e, we get the following properties.

1. $\ln e=1$
2. $\ln 1=0$
3. $\ln e^{x}=x$
4. $e^{\ln x}=x$

VII Modeling with logarithmic functions

The function $f(x)=29+48.8 \log (x+1)$ gives the percentage of adult height attained by a boy who is x years old.
Ex 8: Approximately what percentage of his adult height has a boy of age 11 acheived? (Notice: This model uses a common log.) Round to the nearest tenth of a percent.

The function $f(x)=13.4 \ln x-11.6$ models the temperature increase in degrees
Fahrenheit after x minutes in an enclosed vehicle when the outside temperature is from 72° to 96°.
Ex 9: Use the function above to approximate the temperature increase after 45 minutes. Round to the nearest tenth of a degree.

