MA 15200 Lesson 29 Section 4.3

This lesson is on the properties of logarithms. Properties of logarithms model the properties of exponents.

I Product Rule

Product Rule of Exponents: $b^{m} b^{n}=b^{m+n}$
Notice: When the bases were the same, the exponents were added when multiplication was performed. Likewise logarithms are added when multiplication is performed in the argument.

Product Rule of Logarithms: $\log _{b}(M N)=\log _{b} M+\log _{b} N$
In words, the logarithm of a product is the sum of the logarithms.

When a single logarithm is written using this product rule, we say we are expanding the logarithmic expression.

Ex 1: Assume all variables represent positive values.

Informal Proof:
$\log 100=2 \quad \log 1000=3$
$\log (100 \square 000)$
$=\log (100,000)$
$=5$
$=2+3$
$=\log 100+\log 1000$

Use the product rule to expand each expression and simplify where possible.
a) $\quad \log _{2}(7 r)=$

Caution:

$$
\log _{b}(x+y) \neq \log _{b} x+\log _{b} y
$$

b) $\quad \log _{b}\left(2 x^{2} y\right)=$
c) $\quad \log (100 a b)=$
d) $\ln \left(20 e^{5}\right)=$

II Quotient Rule

Quotient Rule for Exponents: $\frac{b^{m}}{b^{n}}=b^{m-n}$
Notice: When the bases were the same, the exponents were subtracted when division was performed. Likewise, logarithms are subtracted when division is performed in the argument.

Quotient Rule for Logarithms: $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N$
CAUTION:
$\log _{b}(M \pm N) \neq \log _{b} M \pm \log _{b} N$
$\log _{b} \frac{M}{N} \neq \frac{\log _{b} M}{\log _{b} N}$
In words, the logarithm of a quotient is the difference of the logarithms.
We can also expand a logarithm by using the quotient rule.
Ex 2: Assume all variables represent positive values.
Use the quotient rule to expand each logarithm and simplify where possible.
a) $\log _{3}\left(\frac{9}{y}\right)$
b) $\quad \log \left(\frac{x}{1000}\right)$

Note: Our text and online homework does not usually use parenthesis around the argument. However, it would be better to write as in the following. $\ln \left(\frac{4 x^{3}}{y z^{5}}\right)$

III Power Rule

Power Rule for Exponents: $\left(b^{m}\right)^{n}=b^{m n}$
Note: When a power is raised to another power, the exponents are multiplied.
Likewise, when a logarithm has an exponent in the argument, the exponent is multiplied by the logarithm.

Power Rule for Logarithms: $\log _{b} M^{p}=p \log _{b} M$
In words, the logarithm of a power is the product of the exponent and the logarithm.
We can also expand a logarithm by using the power rule.

Ex 3: Assume all variable represent positive values.
Use the power rule to expand each logarithm and simplify where possible.
a) $\log x^{8}=$
b) $\quad \log _{5}\left(25^{3}\right)=$
c) $\ln \sqrt{y}=$

IV Here is a summary of all the properties of logarithms.

Assume all variables represent positive values and that all bases are positive number (not 1).

1. $\log _{b}(M N)=\log _{b} M+\log _{b} N \quad$ Product Rule
2. $\log _{b}\left(\frac{M}{N}\right)=\log _{b} M-\log _{b} N \quad$ Quotient Rule
3. $\log _{b}\left(M^{p}\right)=p \log _{b} M \quad$ Power Rule

Ex 4: Use the properties to expand each logarithmic expression. Assume all variables represent positive values.
a) $\log \frac{x y}{\sqrt{z}}=$
b) $\ln \frac{4 x^{3}}{y z^{5}}=$
c) $\log _{2} 3 \sqrt{x y}=$
d) $\log _{3}\left(27 x^{2} \sqrt[3]{y}\right)$

In opposite of expanding a logarithmic expression is condensing a logarithmic expression. This is writing a logarithmic expression as a single logarithm.

Ex 5: Condense each expression. In other words, write as a single logarithm. Assume all variables represent positive values.
a) $\log 3-\log x+2 \log y-\frac{1}{2} \log z=$
b) $\frac{1}{3} \log (x-2)+2 \log x-2 \log 4=$
c) $\quad \frac{1}{2}(\ln x+3 \ln y)-3 \ln (x+2)$

Ex 6: If $\log _{b} m=2.3892, \log _{b} n=-1.2389$, and $\log _{b} r=0.8881$, use the properties of logs to find the following values.
a) $\log _{b}\left(m^{2} n\right)=$
b) $\quad \log _{b}\left(\frac{\sqrt{n}}{r}\right)=$

Ex 7: If $\log _{b} 8=1.8928, \log _{b} 11=2.1827$, and $\log _{b} 2=0.6309$. Use these values and the properties of logs to find the following values.
a) $\quad \log _{b} 4=$
b) $\log _{b} 88=$

There may be more than 1 way to determine these values.
c) $\quad \log _{\mathrm{b}} 121=$
d) $\quad \log _{b} 44=$

Ex 8: Let $\log _{2} 4=A$ and $\log _{2} 5=B$. Write each expression in terms of A and/or B.

$$
\text { a) } \quad \log _{2}(125)=
$$

b) $\quad \log _{2}\left(\frac{5}{4}\right)=$

V Change of Base Formula

Your scientific calculator will approximate or find common logarithms (base 10) or natural logarithms (base e). How can logarithms with other bases be approximated?

$$
\log _{b} M=\frac{\log M}{\log b} \text { or } \frac{\ln M}{\ln b}
$$

$$
\text { Note: } \log \left(\frac{M}{N}\right) \neq \frac{\log M}{\log N}
$$

The formula above is known as the change of base formula.

Ex 9: Approximate each logarithm to 4 decimal places.
a) $\quad \log _{3}(22.8)=$
b) $\quad \log _{0.2}(285)=$

