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1. Introduction

No doubt the most important result in this course is Cauchy's theorem. Every critical
theorem in the course takes advantage of it, and it is even used to show that all analytic
functions must have derivatives of all orders.1

There are many ways to formulate it, but the most simple, direct and useful is this:
Let f be analytic inside and on the simple closed curve γ. Then

(1.1)

∫
γ

f(z)dz = 0.

The most natural way to prove this is by using Green's theorem. We state the conclu-
sion of Green's theorem now, leaving a discussion of the hypotheses and proof for later.
The formula reads: D is a region bounded by a system of curves γ (oriented in the `positive'
direction with respect to D) and P and Q are functions de�ned on D ∪ γ. Then

(1.2)

∫
γ

Pdx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dxdy.

Green's theorem leads to a trivial proof of Cauchy's theorem. Although this is only
a formal2 proof, since we have not discussed the conditions necessary to apply Green's
theorem, I think it is impressive how `simple' and natural the proof becomes:

(1.3) f = u+ iv dz = dx+ idy

and then3

(1.4)

∫
γ

f(z)dz =

∫
γ

(u+ iv)(dx+ idy) =

∫
γ

u dx− v dy + i

∫
γ

u dy + v dx.

If we apply Green's theorem to each of these line integrals,

(1.5) =

∫∫
D

(
−∂v
∂x
− ∂u

∂y

)
dxdy + i

∫∫
D

(
∂u

∂x
− ∂v

∂y

)
dxdy,

and use the Cauchy-Riemann equations4

(1.6)
∂u

∂x
=
∂v

∂y

∂u

∂y
= −∂v

∂x
,

1Recall that a complex function is analytic in a region if its �rst-order derivative exists.
2�formal� in the sense that we are applying the right steps without checking whether it is the right

thing to do. This is somewhat like a formal circumstance such as meeting the president at a banquet
and asking, �how do you do?� when you couldn't care less how he does. Asking �How do you do?� is
the formal thing to do, but you probably haven't stopped to consider if it is really what you want to
know. It's generally good to start formally, and then check the conditions.

3Recall that we de�ne a complex integral along a contour as
∫
γ
f(z)dz =

∫ t1
t0
f(z(t))(dz/dt)dt where

z(t) is a parameterization of the path γ. Thus
∫
γ

(u+ iv)(dx+ idy) =
∫ t1
t0

(u+ iv)((dx/dt) + i(dy/dt))dt

is a standard de�nite integral and nothing to be afraid of! As an example, consider the integral on the

left side of Green's Theorem:
∫
γ
Pdx + Qdy =

∫ t1
t0
P (dx/dt) + Q(dy/dt) dt. From this it is clear that

we can split it into two integrals:
∫
γ
Pdx+Qdy =

∫
γ
Pdx+

∫
γ
Qdy.

4We will review a proof of the Cauchy-Riemann equations as part of Thm. 3 on page 5.
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we see that the integrand in each double integral is (identically) zero. In this sense,
Cauchy's theorem is an immediate consequence of Green's theorem.

In fact, Green's theorem is itself a fundamental result in mathematics � the funda-
mental theorem of calculus in higher dimensions. Proofs of Green's theorem are in all
the calculus books, where it is always assumed that P and Q have continuous partial
derivatives. Thus our simple proof would apply only to functions with continuous partial
derivatives as well. Unless Cauchy's Theorem applies to all analytic functions, it cannot
be used as the basis for the many important theorems derived from it in this course.

This note makes a case for the simple, elegant proof above by demonstrating that
Green's theorem applies to all analytic functions, not just functions with continuous partial
derivatives.

The heart of this proof is a variation on E. Goursat's `elementary' proof of Cauchy's
theorem. The other observations are not original either, but I am collecting them together
for your convenience.

Editor's Note: Though this document is only 8 pages or so, it will probably take two
sittings to read through it. I'll give you a warning when I think it's time for break!

2. What is wrong?

There are two possible objections to the proof I just presented. One, which we consider
only brie�y here, is that we have not carefully described what kind of curves we are
allowing, or what we mean by the `positive' direction of circuiting γ. We shall allow only
rectangular regions where the positive direction may be clearly de�ned. Extending the
proof to other regions is a problem of point-set topology or geometric measure theory, and
this note o�ers no insight on these issues. (We may eventually look at these questions in
Appendix D).

The second, and principle, objection is that we have not stated the hypotheses on P
and Q needed to apply Green's theorem. Supplying these hypotheses, and a proof that
Green's theorem still holds, is the purpose of this note.

As mentioned above, the proofs of Green's theorem in the calculus books assume that
the partial derivatives are continuous. When applied to our analytic function f(z), this
means that we are assuming that the partial derivatives ux(= ∂u/∂x), uy, vx and vy
are continuous. The partial derivatives of an analytic function are continuous, but this is
something that is most often proved using Cauchy's Theorem. To avoid circular reasoning,
a proof of Cauchy's Theorem should not make this assumption.

The purpose of this note is to show that we do not need to assume P and Q have
continuous partials; indeed, Green's theorem holds when P and Q satisfy conditions which
�t exactly with what it means for f = P + iQ to be analytic.

3. Outline

Our goal is to prove a general form of Cauchy's Theorem:

Theorem 1. Let f be analytic inside a rectangle R and continuous on its boundary. Then
Cauchy's theorem (1.1) holds.

We will do this using the techniques of Section 1 with a formulation of Green's Theorem
which does not depend on continuous partial derivatives:

Theorem 2. Let P and Q be di�erentiable inside and on a rectangle R with boundary γ
and suppose that

(3.1)
∂Q

∂x
− ∂P

∂y
= 0

Then Green's Theorem (1.2) holds.
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The proof for this theorem will be presented in Section 8. Note that in principal
∂Q/∂x−∂P/∂y could be identically zero without the component terms ∂Q/∂x and ∂P/∂y
being continuous.

To be able to use Theorem 2 to derive Theorem 1, we will check two things:

(1) That u and v are di�erentiable at each point z at which f ′(z) exists. To aid in
this endeavor, we will review what it means to be di�erentiable.

(2) That ∂u
∂x
− ∂v

∂y
= 0. This follows from the Cauchy-Riemann equations, which we

will also review.

Verifying these points will also prepare us for the �nal step, proving Green's Theorem
(Thm 2). For this, we will use the same argument that E. Goursat introduced to give
his famous `elementary' proof of Cauchy's theorem, which appeared in Volume 1 of the
Transactions of the American Mathematical Society.

4. How do we prove Thm 1?

Once we have proved Green's theorem, as stated in Thm. 2, we can apply the proof
given in the �rst section of this paper. But how do we know the combination ∂Q/∂x −
∂P/∂y is identically zero?

This is because the Cauchy-Riemann equations hold. To be speci�c, we know that if
f is analytic, then ∂u/∂x− ∂v/∂y = 0. Similarly, −∂v/∂x− ∂u/∂y = 0. Thus one of the
conditions required for Thm. 2 is met perfectly by any analytic function. The remaining
condition is that P and Q be di�erentiable.

If you are feeling a little uncertain about the Cauchy-Riemann equations, don't despair!
We will actually prove these on the side in Section 6.

5. Differentiability

Our version of Green's Theorem requires that the P and Q be di�erentiable. Before
we can show that the real and imaginary parts of any analytic function are di�erentiable,
a little review of di�erentiability is in order. Although this is standard material in third-
semester calculus, the review is likely helpful.

5.1. Di�erentiability in one dimension. In one dimension, we de�ne di�erentiability
as having a derivative. Now the derivative exists as long as the limit that de�nes it exists:

(5.1) lim
x→a

u(x)− u(a)

x− a = A

But this limit is equivalent to the following limit:

(5.2) lim
x→a

u(x)− u(a)−A(x− a)

x− a = 0.

If either limit exists, the other is guaranteed to exist as well, either can be used as the
de�nition of the derivative. The nice thing about the second limit is that it is zero. And
there is a very convenient theorem involving limits which are zero. If we multiply this limit
by anything with absolute value 1, it will still be zero. So let's multiply it by (x−a)/|x−a|.
This yields

(5.3) lim
x→a

u(x)− u(a)−A(x− a)

|x− a| = 0.

Again, this limit exists if (and only if) the function u(x) has a derivative at x = a. So we
can use it as an alternate form for the derivative.

Why is this function nice? It has allowed us to do what we had hoped to do originally
� to divide by something like (x− a) in a higher-dimensional space.
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For convenience, we will de�ne S(x) = u(x) − u(a) − A(x − a), so that if and only if
u(x) is di�erentiable, we have

(5.4) lim
x→a

S(x)

|x− a| = 0

Intuitively, it is nice to put the de�nition of S(x) into the form

(5.5) u(x) = u(a) +A(x− a) + S(x)

where we can see that the original function is equal to its value at the point a, plus the
straight line A(x− a), plus the error term S(x), which is a function which not only goes
to 0 at x = a, but has its derivative there at well. S(x) is truly an unobtrusive function
in the vicinity of x = a!

5.2. Di�erentiability in higher dimensions. In dimensions greater than one, being
di�erentiable is a much stronger property than having partial derivatives, since it is a
condition on the entire region surrounding a point p, not just the paths of constant x or
y through p. To see how this is, let us consider the de�nition of di�erentiability for a
real-valued function u in the domain D.

De�nition. The function u(x, y) is di�erentiable at (a, b) if there are constants A and B
so that

(5.6) u(x, y)− u(a, b) = A (x− a) +B (y − b) + S(x, y)

where the `remainder' S satis�es

(5.7) lim
(x,y)→(a,b)

S(x, y)

|(x, y)− (a, b)| = lim
(x,y)→(a,b)

S(x, y)√
(x− a)2 + (y − b)2

= 0.

This de�nition is a simple extension of the one-dimensional derivative we developed above.
Intuitively, this means that a function is di�erentiable if it can be locally approximated
by a linear function with a remainder term that vanishes near the point (a, b). Again this
vanishing term is well-behaved. Not only does it go to 0, it's derivative is 0 at (a, b) as
well.

5.3. Di�erentiable functions have partial derivatives.

De�nition. Based on this intuition, we might guess that every di�erentiable function has
partial derivatives. Proving this makes a good exercise, as follows. If we set y identically

equal to b, and let x→ a, then
√

(x− a)2 + (y − b)2 =
√

(x− a)2 = |x− a|, so (5.7) tells
us that

(5.8) lim
x→a

u(x, b)− u(a, b)−A · (x− a)

|x− a| = 0.

It is quite amazing how useful this formulation is. Since the limit on the right side is
zero, we can multiply the left side by any factor of absolute value one without changing
the equation. Multiplying by |x− a|/(x− a), we have at once

(5.9) lim
x→a

u(x, b)− u(a, b)−A · (x− a)

(x− a)
= 0 :

(5.10) ux(a, b) = A;

similarly, we see that uy(a, b) = B. So it is not di�cult to show that a di�erentiable
function has partial derivatives.

However, as we mentioned at the beginning, being di�erentiable is a much stronger
property than having partial derivatives, since it is a condition independent of how (x, y)→
(a, b). For example, the function u(x, y) = xy/(x2 + y2) has ux(0, 0) = uy(0, 0) = 0, but
it is not di�erentiable, or even continuous, at (0,0) since u(x, x) = 1/2 on the 45-degree
line through the origin, but is zero on both the axes.
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5.4. Di�erentiable functions of complex variables.

De�nition. Before leaving this section, let's note that di�erentiability is de�ned similarly
for functions of complex variables. The function u(z) = u(x, y) is di�erentiable if there
are constants A and B such that

(5.11) u(z)− u(z0) = A · (x− a) +B · (y − b) + S(z)

where the remainder S satis�es

(5.12) lim
z→z0

S(z)

|z − z0|
= 0.

We can imagine this formula intuitively in the same way as the �rst formula, since S(z)
can be imagined as a surface. Because z is a complex number, its real and imaginary parts
take the place of x and y in our previous discussion.

6. First Blood

Let us prove a little theorem. The proof is not hard at all, and if you go through it,
you will see that you are just rearranging equalities everywhere. And for this proof, the
moral of the story is critical to our argument; it says that for u and v to be di�erentiable
is as natural as f = u + iv having a derivative (that is, as natural as f being analytic),
meeting the condition that P and Q are di�erentiable in Thm. 2.

Theorem 3. Let f = u + iv be de�ned in some neighborhood of z0 = a + ib. Then f ′

exists at z0 if and only if, at z0, we have both that u and v are di�erentiable, and that the
partials of u and v satisfy ∂u

∂x
= ∂v

∂y
and ∂u

∂y
= − ∂v

∂x
(the Cauchy-Riemann equations).

Proof. First let's assume that the derivative exists and is f ′(z0) = A+ iB. We show that
u and v are di�erentiable and satisfy Cauchy-Riemann. Let's write the di�erence between
the function and its local linear approximation f(z)− f(z0)− (A+ iB) · (z− z0) in terms
of u, v, x, and y. We also separate real and imaginary parts to yield:

f(z)− f(z0)− (A+ iB) · (z − z0)

= (u(z) + iv(z))− (u(z0) + iv(z0))− (A+ iB) · ((x− a) + i(y − b))
= (u(z)− u(z0)− [A · (x− a)−B · (y − b)]

+ i{v(z))− v(z0)− [B · (x− a) +A · (y − b)]}.

As in Sec. 5, we may divide by z − z0 or |z − z0| as we wish. If we divide by z − z0,
the left side tends to 0 since A + iB = f ′(z0). Thus the right-hand side must go to zero
as well. Now if we multiply the right-hand side by (z − z0)/|z − z0|, it must still go to
zero, in both the real and imaginary parts. Since the real part has 0 as a limit, u must
be di�erentiable at z0. Similarly for the imaginary part, v must be di�erentiable at z0 as
well. Moreover, applying the same technique we used in Section 5, we can show that the
numbers A and B are the partial derivatives of both u and v, by considering either the
real or the imaginary part. Thus we have

(6.1) A = (∂u/∂x)|z=z0 = (∂v/∂y)|z=z0 ,

(6.2) B = (∂v/∂x)|z=z0 = −(∂u/∂y)|z=z0 :

the Cauchy-Riemann equations hold if f ′(z) exists at z0.
The proof in the other direction is just as easy. Let's assume that u and v are dif-

ferentiable at z0 and the partials of u and v at that point satisfy the Cauchy-Riemann
equations. Then we can denote them as

(6.3) u(z)− u(z0) = A · (x− a) +B · (y − b) + S
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(6.4) v(z)− v(z0) = C · (x− a) +D · (y − b) + T.

Again, the technique of Section 5 shows that the constants A, B, C, and D correspond to
the partial derivatives. Applying the Cauchy-Riemann equations, we have

(6.5) u(z)− u(z0) = A · (x− a) +B · (y − b) + S

(6.6) v(z)− v(z0) = −B · (x− a) +A · (y − b) + T

where S and T are the remainder terms. We substitute these into f = u+ iv:

f(z)− f(z0) = (u(z) + iv(z))− (u(z0) + iv(z0))

= A · (x− a) +B · (y − b) + S + i[−B · (x− a) +A · (y − b) + T ]

= A · (x− a) +B · (y − b) + i[−B · (x− a) +A · (y − b)] + S + iT

= (A+ iB) · (z − z0) + S + iT.

Thus, on dividing by z − z0 or |z − z0| as appropriate, taking the limit as z → z0, and
recalling (5.12) we have that f ′(z0) = A+ iB, and thus exists. �

7. Taking Stock

We have shown that if f is analytic, then u, v are di�erentiable and ux = vy and
uy = −vx, such that ∂Q/∂x − ∂P/∂y = 0 in both applications of Green's theorem.
Therefore, we can apply the analytic-conditions version of Green's theorem (Thm. 2) to
prove the analytic-conditions version of Cauchy's theorem (Thm. 1). All that remains is
the proof for Thm. 2.

8. Final Advance

Editor's Note: At this point, you may want to set down this paper for a while, and
perhaps come back to it tomorrow. We have covered a lot of ground, and even I (Josiah)
am usually pretty tired by the time I read to this point. But the most beautiful part of the
proof is in this section, so I hope you come back!)

For linear functions, that is, functions of the form f(x, y) = Ax + By + c, we already
have a proof of Green's theorem (1.2), because linear functions have continuous partial
derivatives, so the standard proofs of Green's theorem apply. (Alternatively, we can
demonstrate Green's theorem directly for linear equations. This is done in Appendix A.)

To prove Green's theorem (Thm. 2) for general functions, we use a technique similar
to Goursat's. Let us suppose that Green's theorem is applied to a rectangular region R0

with boundary γ0; then we wish to show that

(8.1)

∫
γ0

Pdx+Qdy −
∫∫

R0

∂Q

∂x
− ∂P

∂y
dxdy = 0

Since ∂Q
∂x
− ∂P

∂y
= 0 in the case we need to apply Green's theorem, the double integral is

zero, and we need only show that

(8.2)

∫
γ0

Pdx+Qdy = 0

The approach we use here can be used to prove Green's theorem more generally, but
eliminating the double-integral at this point will certainly make the proof shorter.

Suppose this is false, then there must be a ∆0 such that

(8.3)

∣∣∣∣∫
γ0

Pdx+Qdy

∣∣∣∣ > ∆0
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(a) (b)

Figure 8.1. Dividing the region into quadrants. (a) At each level, the
rectangular region is divided into quadrants. If the total contribution
from γ0 to 8.3 is greater than ∆0, then the contribution from at least
one of 1γ, 2γ, 3γ, or 4γ must be at least ∆1 ≥ ∆0/4. (b) We continue
this, �nding successively smaller regions such that ∆n ≥ ∆0/4

n. Here,
R1 = 2R0 and R2 = 4R1. Note that there are no margins between the
rectangles, these are included in the �gure to allow the sub-regions to
be distinguished more easily.

We will prove that ∆0 does not exist by contradiction. Here is Goursat's idea. Suppose
we divide R0 into quadrants 1R, 2R, 3R, and 4R as illustrated in Figure 8.1a, and look at
the integrals5

(8.4)

∣∣∣∣∫
iγ

Pdx+Qdy

∣∣∣∣ , i = 1, 2, 3, 4

We can't have all four of these di�erences less than ∆0/4, for if they were, we could add
them up and the sum would be less than ∆0. That means that there must be one smaller
rectangle, each side of which is half that of R0, for which the di�erence in the two terms
is at least ∆0/4. We shall call this rectangle R1, its border γ1, and the di�erence in the
two terms ∆1 ≥ ∆0/4.

Now you might be wondering why we can add up the line integrals in (8.4) just like the
area integrals. This is a good question. The sum of the four quadrant line integrals add to
form the line integral around the main rectangle because, along the interior boundaries,
the integrals cancel out. For more details on this, see Appendix B.

Now we repeat this argument with R1 and divide it into four smaller rectangles (Fig.
8.1b); for one of them, we have that the di�erence ∆2 ≥ ∆1/4 ≥ ∆0/4

2. We call this R2,
bounded by γ2. Continuing in this fashion, for each positive integer n we �nd a rectangle
Rn inside Rn−1with boundary γn such that

(8.5)

∣∣∣∣∫
γn

Pdx+Qdy

∣∣∣∣ = ∆n ≥ ∆0/4
n

We shall show that for large enough n, no such region exists.
But continuing to suppose that some ∆0 > 0 does exist (and thus that Cauchy and

Green's theorems are false. . . ), such a region could be found for arbitrarily-large n. We

5Note that we use pre-scripts like 1R to represent the four quadrants, and post-scripts like R1 to
represent levels of nested quadrants which we will introduce shortly.
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accept as fact that there must be some point z0 which is in every one of the nested
rectangular regions, i.e. zo ∈ Ri, i = 0, 1, 2, . . . ,. This is itself a theorem from topology,
which is discussed in Appendix C, but we hope that it seems obvious enough. Of course,
we have stated in the requirements for the proof that P and Q must be di�erentiable
inside R0 and on γ0, so they must be di�erentiable in the neighborhood of z0, and we have

(8.6)
P (z) = P (z0) +A · (x− a) +B · (y − b) + S(z)
Q(z) = Q(z0) + C · (x− a) +D · (y − b) + T (z)

where A, B, C, and D are the partial derivatives at z0 = a+ ib and S and T satisfy

(8.7) lim
z→z0

S(z)

|z − z0|
= 0, lim

z→z0

T (z)

|z − z0|
= 0

At the beginning of this section, we observed that (1.2) is true when P and Q are linear,
and so on consulting (8.6), we see that we need only consider the case that P (z) = S(z),
Q(z) = T (z).

At this point, you may wish to ask, �But aren't we using Green's Theorem to prove
Green's Theorem?� This is a very good question. Yes, we are using a proof of Green's
theorem that applies for linear functions. This version can be proved using the standard
proofs for Green's theorems found in the textbooks, or by evaluating the integrals directly,
as will be done in Appendix A. The proof we are giving here extends Green's theorem to
all analytic functions, regardless of whether they have continuous partial derivatives. Of
course, all analytic functions have continuous partial derivatives, but as we mentioned in
the introduction, the easiest way to prove this is using Cauchy's theorem!

Once we eliminate the linear parts of P (z) and Q(z) at z0, all we have left to do is to
show that there is no ∆0 > 0 such that

(8.8)

∣∣∣∣∫
γn

Sdx+ Tdy

∣∣∣∣ = ∆n ≥ ∆0/4
n

Let's focus for a moment on an upper bound for the line integral
∣∣∣∫γn Sdx∣∣∣. From 8.7

and by the de�nition of a limit, for every ε > 0, there exists a δ > 0 such that for all z in
the circle |z − z0| < δ we are guaranteed that

(8.9) S(z)/|z − z0| < ε

Now suppose we select n large enough that the entire region Rn �ts inside this circle (the
larger circle in Figure 8.2). Now consider the smaller circle |z − z0| < δn, where δnis
the distance from the center zn of the rectangle to the edge, . Because this circle lies
entirely inside the larger circle, equation (8.9) applies and we can further say that for z in
|z − z0| < δn,

(8.10) S(z) < |z − z0|ε < δnε.

This gives us a tight upper bound for the value of S(z) along the line integral of Eq. (8.8).
Can we �nd a similar bound for the path length? Each side of the rectangle is smaller
than 2δn, so |γn| < 8δn. Thus the line integral (8.8) is bounded by

(8.11)

∣∣∣∣∫
γn

Sdx

∣∣∣∣ < (δnε)(8δn)

But here's the fun part! We can bound δn ≤ δ02−n where δ0 is the length of the diagonal
of the original rectangle R0, since δn is shorter than the diagonal of Rn. So an n exists
such that our bound on the original rectangle is

(8.12)

∣∣∣∣∫
γn

Sdx

∣∣∣∣ < (εδ02−n)(8δ02−n) =
ε8δ20
4n
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Figure 8.2. Limiting circle

where ε may be taken as small as we wish. The same bound applies for T (z)6, and we can
bound the entire line integral (8.8) as

(8.13)

∣∣∣∣∫
γn

S(z)dx+ T (z)dy

∣∣∣∣ ≤ ∣∣∣∣∫
γn

S(z)dx

∣∣∣∣+

∣∣∣∣∫
γn

T (z)dy

∣∣∣∣ < 2
ε8δ20
4n

=
ε16δ20

4n

Thus, for any ε > 0, an n exists such that

(8.14)

∣∣∣∣∫∫
γn

P (z)dx+Q(z)dy −
∫∫

Rn

(
∂Q

∂x
− ∂P

∂y

)
dxdy

∣∣∣∣ = ∆n <
ε16δ20

4n
= eC04−n

where C0 = 16d20 is �xed with respect to n and ε. This contradicts (8.8), which stated
that ∆n ≥ ∆04−n for all n.7

This contradiction proves that our version of Cauchy's theorem holds precisely under
the hypothesis that f(z) has a derivative at each point of our rectangle R and its boundary.

Appendix A: Green's Theorem For Linear Functions

In our �nal advance (Sec. 8), we state that it is easy to prove Green's theorem when
P and Q are linear functions and ∂Q/∂x− ∂P/∂y = 0, that is

(8.15) P (x, y) = A+Bx+ Cy

(8.16) Q(x, y) = D + Ex+ Fy

(8.17) E − C = 0

6. . . though admitedly it may be for a di�erent circle δ. But hey, we can always choose the smaller
of them right? This is mathematics, not engineering! What's an extra factor of 10 or 100 between
friends, when we have an ε to cancel it out?

7As an example of the contradiction, suppose that C∗ = 0.5, and that we hypothesize that ∆0 =
0.2. We can show this ∆0 is impossible by selecting (for example) ε = ∆0/C

∗/2 = 0.2 such that

∆n ≤ (0.1)(4−n) for su�ciently large n and ∆ ≥ (0.2)(4−n) for all n, a contradiction. This same
procedure could be used to prove that any ∆0 > 0 will not work. Thus ∆0 must be 0.
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Figure 8.3. A very simple line integral for proving Green's Theorem
for the linear case.

where A, B, C, D, E, and F are constants. In this case, we can simply use one of the
common proof of Green's theorem which only work when P and Q are continuous. But
since it is not hard to provide a special proof just for linear functions, we will do that here.

Here, we will consider the case where the γ is a rectangle with height H and width
W as shown in Figure 8.3. The parts which only involve the variable of integration will
cancel because the outward-bound line integral will be matched by the returning one:

(8.18)

∫
γ

A+Bxdx = 0

(8.19)

∫
γ

D + Fy dy = 0

so that

(8.20)

∫
γ

P (x, y)dx−
∫
γ

Q(x, y)dy =

∫
γ

Cy dx−
∫
γ

Exdy

Let's evaluate
∫
γ
Cy dx =

∫
©1 Cy dx+

∫
©2 Cy dx+

∫
©3 Cy dx+

∫
©4 Cy dx=

∫
©1 Cy dx+

∫
©3 Cy dx =

CaW − CbW = C(a − b)W = −CHW . (The integrals along ©2 and ©4 are 0 because
dy/dt = 0 along these curves.) Similarly,

∫
γ
Exdy = EHW . Since we have E − C = 0,

the whole contour integral comes to
∫
γ
Pdx+Qdy = −CHW + EHW = 0.

Appendix B

For double integrals, it is no surprise that the sum of the integrals in the quadrants is
equal to the sum of the integral over the whole rectangle (e.g. Fig. 8.1a). But what about
the line integrals?

As an example, let's prove that for Figure 8.4,
∫
γsum

f(z)dz =
∫
γ1
f(z)dz+

∫
γ2
f(z)dz.

Let's assume that all of the integrals are with f(z)dz and simply not write this for con-
venience. From the �gure,

∫
γ1

=
∫
©1 +

∫
©2 +

∫
©3 +

∫
©4. Similiarly,

∫
γ2

=
∫
©5 +

∫
©6 +

∫
©7 +

∫
©8.

Now since
∫
©8 is along the same line as

∫
©2, but in the opposite direction, we have

∫
©8 = −

∫
©2.

So
∫
γ1

+
∫
γ2

=
∫
©1 +

∫
©3 +

∫
©4 +

∫
©5 +

∫
©6 +

∫
©7 =

∫
γsum

.
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Figure 8.4. Adding line integrals

Appendix C

Theorem 4. For all sequences of nested rectangles R0, R1, R2 . . ., such that Ri+1 ⊂ Ri for
all i, there exists a point z0 which is within all the rectangles, i.e. z0 ∈ Ri, i = 1, 2, 3, . . ..

Proof. This theorem boils down to assuming that the real numbers are continuous. If
we consider the x coordinates of the points, saying z ∈ R means that x ∈ [xi, xf ] where
[xi, xf ] is some range of the real line. We start by proving that two points cannot be inside
all of the nested rectangles. Suppose the two points z1 and z2 have di�erent x coordinates
such that |x1 − x2| > ∆ > 0. (If x1 = x2, we would use y instead.) Now we can always
divide the rectangles smaller and smaller until the width of the rectangle is less than ∆.
So |x1−x2| < ∆ for all the points inside the rectangle, and clearly both x1 and x2 cannot
be in the same rectangle. This leads to the conclusion that at most one point can be inside
all the rectangles.

But could it be that no point is inside all of the rectangles? This could happen for
example if we only allowed x to be a rational number. To say that x must exist is rather
like saying the real number line doesn't have any holes. This is closely related to the
de�nition of the real numbers, which we do not have space to discuss here. If you are
interested in more information, the Wikipedia article �Construction of the real numbers�
looks like a good place to start. �

Appendix D

Here we consider standard extensions that make the proof of Cauchy's theorem even
more general. Our original proof looked only at rectangles and required the function to
be di�erentiable on the boundary. We shall �rst relax the condition to allow the function
to be merely continuous on the boundary. Then we shall look at how the proof can be
extended to non-rectangular regions.

Theorem 5. Cauchy's theorem also holds if the function is analytic inside γ but only
continuous on γ.

Proof. Not yet included. Has to do with the limiting rectangle growing to �ll up the other
rectangle. �

Theorem 6. Cauchy's Theorem also holds for smooth contours.

Proof. Not yet included. A similar limiting argument. Look at stair-step, and bound error

using the continuity of the function: |fn(x)− f(x)| < ε/(b− a) so the
∫ b
a
error ≤ ε. �


