What is a value for $9^{\frac{1}{2}}$? **Consider This.** $9^{\frac{1}{2}} \times 9^{\frac{1}{2}} = 9^{\frac{1}{2} + \frac{1}{2}} = 9^1 = 9$ using the product rule of exponents. **Now, Think!** What other number times itself equals 9? $3 \times 3 = 9$ Since both products equal 9, we can conclude that $9^{\frac{1}{2}} = 3$.

Conclusion: A rational exponent is the same as a root!

Definition of a rational (fractional) exponent: $a^{\frac{1}{n}} = \sqrt[n]{a}$

Evaluate or write an equivalent root for each. Simplify, if possible.

1. $16^{\frac{1}{2}} =$ 2. $x^{\frac{1}{3}} =$ 3. $(-32)^{\frac{1}{5}} =$ 4. $(4c)^{\frac{1}{4}} =$

Write an equivalent expression using exponential notation.

- 5. $\sqrt[4]{5} =$
- 6. $\sqrt[3]{ab^2} =$
- 7. $\sqrt{n} =$

Expanded Definition of a rational (fractional) exponent: $a^{\frac{m}{n}} = \sqrt[n]{a^m} \operatorname{or} \left(\sqrt[n]{a}\right)^m$

Proof:
$$a^{\frac{m}{n}} = \left(a^{m}\right)^{\frac{1}{n}} = \sqrt[n]{a^{m}}$$
$$a^{\frac{m}{n}} = \left(a^{\frac{1}{n}}\right)^{m} = \left(\sqrt[n]{a}\right)^{m}$$

Notice: The exponent m can be inside the radical (in the radicand) or outside of the radical. The order does not matter. You can raise to the m power first and then take the nth root. Or you can take the nth root and then raise to the m power. When evaluating (because you do not have the use of a calculator on quizzes or exams), it would be better for you to take the root first, then raise to the exponent power.

The index of the root comes from the denominator. The exponent is the numerator.

Evaluate or write an equivalent root for each.

8.
$$27^{\frac{2}{3}} =$$

9. $16^{\frac{3}{2}} =$
10. $(mn)^{\frac{3}{4}} =$

Write an equivalent expression using exponential notation.

11.
$$\sqrt[4]{8^3} =$$

12. $(\sqrt[3]{(ab)})^5 =$

The rules of exponents we had back at the beginning of the semester also apply with these rational exponents. Here is a summary of those rules. Product Rule: $a^m \bullet a^n = a^{m+n}$

Quotient Rule:
$$\frac{a^m}{a^n} = a^{m-n}$$

Negative Exponent Rule: $a^{-n} = \frac{1}{a^n} \text{ or } \frac{1}{a^{-n}} = a^n \text{ or } \left(\frac{a}{b}\right)^{-n} = \left(\frac{b}{a}\right)^n$

Power Rules:
$$(a^m)^n = a^{mn}$$

 $(ab)^n = a^n b^n$
 $\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}$

Use the rules of exponents to simplify.

13.
$$8^{\frac{2}{3}} \bullet 8^{\frac{5}{3}} =$$

$$14. \ \frac{2^{\frac{5}{8}}}{2^{-\frac{1}{8}}} =$$

$$15.\left(x^{-\frac{1}{4}}\right)\left(x^{\frac{4}{5}}\right) =$$

$$16. \left(4^{\frac{2}{3}}\right)^{\frac{9}{2}}$$

$$17.\left(4^{\frac{2}{3}}m^{\frac{3}{4}}\right)^{\frac{1}{2}} =$$

$$18.\left(x^{-\frac{1}{3}}\right)^4$$