Lesson 40 Section 8.2

Quadratic Formula:

If
$$ax^2 + bx + c = 0$$
, then the value(s) of x can be found by $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Note:
$$-b$$
 mean the opposite of b b^2 is always positive $-4ac$ means $(-4)(a)(c)$

Use the quadratic formula to solve the following quadratic equations.

1)
$$x^2 - 2 = -x$$

$$2) 2 - 15t^2 - 7t = 0$$

3)
$$4 = 3x(x-2)$$

4)
$$5x(x-1) - 7 = 4x(x-2)$$

5) If
$$f(a) = 9a^2 - 12a - 4$$
, find any a such that $f(a) = 0$.

6)
$$8x + 2x(x - 3) = 10$$

$$3 = 2r(r+2)$$

$$3(x^2 + 1) = -12x$$

9) If $g(x) = \frac{2}{x} + \frac{2}{x+3}$, find all x for which g(x) = 1

A boat travels 24 miles at a certain speed, and then continues for 30 miles farther at a speed that is 3 miles per hour faster. The total time of the entire trip is 4 hours. What is the speed for each part of the trip?

	Distance	Rate	Time
1 st part			
1			
2 nd part			

time for 1^{st} part + time for 2^{nd} part = 4 hours

Two hoses together can fill a pool in 2 hours. The larger hose alone can fill the pool is 3 hours less time than the smaller hose. How long would it take each hose alone to fill the pool?

x =time alone for smaller hose x - 3 =time alone for larger hose rates: