MA 15200 Lesson 40, Appendix I, Section 5.6

When an individual borrows money from a bank, he or she signs a promissory note, a contract that promises to repay the money loaned. In a previous lesson, we discussed a formula that could be used to repay a loan in one payment at the end of the term of the loan. This formula was $S=P(1+i)^{k t}$, where $i=\frac{r}{k}$. However, most banks require customers to repay in equal payment installments, rather than one repayment. This process is called amortization. To determine what each payment of a loan would be, the 'present value of an annuity' formula is solved for the principal amount (payment amount) R. This gives the following.

$$
R=\frac{P i}{1-(1+i)^{-k t}}
$$

Replacing P with A, which represents the amount of the loan, gives the following formula.

> Installment Payments: The periodic payment required to repay an amount A is given by $R=A\left[\frac{i}{1-(1+i)^{-k t}}\right]$, where r is the annual rate, k is the frequency
> of compounding, i is the periodic rate $\left(i=\frac{r}{k}\right)$, and t is
> the term (time) of the loan.

Ex 1: Find the amount of an installment payment required to repay a loan of $\$ 15,000$ repaid over 12 years, with monthly payments at a 9% annual rate.

Ex 2: Hugh is buying a $\$ 18,500$ new car and financing it over the next 5 years. He is able to get a 9.3% loan. What will his monthly payments be?

Ex 3: One lending institution offers two mortgage plans. Plan A is a 15 -year mortgage at 12%. Plan B is a 20 -year mortgage at 11%. For each plan, find the monthly payment to repay $\$ 130,000$.

Ex 4: For each plan above (A and B of problem 3), how much total would all payments equal? How much interest is paid in each plan?

