MA 15400

Spring 2011

Exam 1

PYTHAGOREAN IDENTITIES

 $\sin^2\theta + \cos^2\theta = 1$

 $1 + \tan^2 \theta = \sec^2 \theta$

 $1 + \cot^2 \theta = \csc^2 \theta$

- 1. Which of the following are **not** coterminal angles with $\theta = -150^{\circ}$?
 - A. $\frac{5\pi}{6}, \frac{17\pi}{6}$ B. $210^{\circ}, -510^{\circ}$ C. $\frac{-17\pi}{6}, \frac{31\pi}{6}$ D. $930^{\circ}, -870^{\circ}$ E. All of the abo
 - E. All of the above are coterminal angles.
- 2. Find the complementary angle to $\theta = 17^{\circ} 4' 12''$.
- A. 162°18'40"
- B. 72°55'48"
- C. 72°18'40"
- D. 162°55'48"
- E. None of the above.
- 3. Find the area of the sector of the circle with radius 7.9 cm, whose central angle θ subtends an arc of 5.6 cm. Round your answer to one decimal place.
 - A. 31.1cm²
 B. 62.1cm²
 C. 11.1cm²
 D. 22.1cm²
 - E. None of the above.

4. A pendulum in a grandfather clock is 5 feet long and swings back and forth along an 8 inch arc. Approximate the angle, to the nearest tenth of a degree, through which the pendulum passes during one swing. (12 inches = 1 foot)

A.	6.8°
B.	7.5°
C.	6.7°
D.	7.6°
E.	None of the above.

- 5. Stonehenge was constructed using solid stone blocks weighting over 99,000 pounds each. Lifting a single stone required 550 people, who pulled the stone up a ramp inclined at an angle of 9°. Approximate the distance the stone was moved along the ramp in order to raise it to a height of 40 feet? Round your answer to the nearest foot.
 - A. 256 feet
 - B. 157 feet
 - C. 213 feet
 - D. 194 feet
 - E. None of the above.

6. Approximate to four decimal places.

 $\cot(159^\circ)$

A. -1.0711
B. 0.0001
C. 2.7904
D. -2.6051
E. None of the above.

- 7. Which of the following is equivalent to: $\cos^2 \theta \left(\sec^2 \theta + \csc^2 \theta\right)$
 - A. $\sec^2 \theta$ B. $\tan^2 \theta$ C. $\csc^2 \theta$ D. $\sin^2 \theta$ E. $\cot^2 \theta$
- 8. Find the exact value of $\cos \theta$, if θ is in standard position and the terminal side of θ is in *QII* and parallel to the line 7x + 4y = 12.

A.
$$\frac{7}{\sqrt{65}}$$

B.
$$\frac{-4}{\sqrt{65}}$$

C.
$$\frac{-7}{\sqrt{65}}$$

D.
$$\frac{4}{\sqrt{65}}$$

E. None of the above.

9. Which of the following is equivalent to: $\frac{\sin(-x)}{\cos(-x)}$

A.
$$-\tan x$$

B. $-\cot \theta$
C. $\tan x$
D. $\cot \theta$
E. $\csc x$

10. Let P(t) be the point that the terminal side of the angle *t* intersects the unit circle. If $P(t) = \left(\frac{-24}{25}, \frac{-7}{25}\right)$, find P(-t).

A.
$$\left(\frac{-24}{25}, \frac{-7}{25}\right)$$

B. $\left(\frac{24}{25}, \frac{-7}{25}\right)$
C. $\left(\frac{-24}{25}, \frac{7}{25}\right)$
D. $\left(\frac{24}{25}, \frac{7}{25}\right)$

E. None of the above.

11. As
$$x \to \frac{3\pi^+}{2}$$
, $\tan(x) \to$ _____

A. undefined B. $-\infty$ C. 0 D. ∞ E. 1

12. Find the exact value of $\csc\left(\frac{4\pi}{3}\right)$.

A.
$$\frac{2}{\sqrt{3}}$$

B. $\sqrt{2}$
C. $-\sqrt{2}$
D. $\frac{-2}{\sqrt{3}}$

E. None of the above

- 13. Approximate to the nearest 0.01 radians, all angles θ in the interval $[0,2\pi)$ that satisfy the equation: $\sec \theta = 1.4682$
 - A. 2.32,3.96
 B. 0.82,3.96
 C. 2.32,5.46
 D. 0.82,5.46
 E. None of the above
- 14. Find the period and phase shift of the following function.

$$y = 5\sin\left(\frac{1}{4}x - \frac{3\pi}{4}\right)$$

A.
$$Period = \frac{\pi}{2}$$
, $Phase Shift = 3\pi$
B. $Period = 8\pi$, $Phase Shift = 3\pi$
C. $Period = \frac{\pi}{2}$, $Phase Shift = \frac{3\pi}{16}$
D. $Period = 8\pi$, $Phase Shift = \frac{3\pi}{16}$

E. None of the above

MA 15400 Exam 1 Spring 2011 Covers Lessons 1 to 11, which include all of Sections 6.1, 6.2, 6.3, 6.4, and 6.5

15. Find the graph of the function
$$y = 3\sin\left(2x + \frac{\pi}{4}\right)$$
.

