CONSUMERS' AND PRODUCERS' SURPLUS

$$
\begin{aligned}
& \mathrm{CS}=\int_{0}^{q_{0}} D(q) d q-p_{o} q_{0} \\
& \mathrm{PS}=p_{o} q_{0}-\int_{0}^{q_{0}} S(q) d q
\end{aligned}
$$

TRAPEZOIDAL RULE

$$
\int_{a}^{b} f(x) d x \equiv \frac{\Delta x}{2}\left[f\left(x_{1}\right)+2 f\left(x_{2}\right)+2 f\left(x_{3}\right)+\cdots+2 f\left(x_{n}\right)+f\left(x_{n+1}\right)\right],
$$

where $a=x_{1}, x_{2}, x_{3}, \ldots, x_{n+1}=b$ subdivides $[a, b]$ into n equal subintervals of length $\Delta x=\frac{b-a}{n}$.

THE SECOND DERIVATIVE TEST

Suppose f is a function of two variables x and y, and that all the second-order partial derivatives are continuous. Let

$$
D=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}
$$

and suppose (a, b) is a critical point of f.

1. If $D(a, b)<0$, then f has a saddle point at (a, b),
2. If $D(a, b)>0$ and $f_{x x}(a, b)<0$, then f has a relative maximum at (a, b).
3. If $D(a, b)>0$ and $f_{x x}(a, b)>0$, then f has a relative minimum at (a, b).
4. If $D(a, b)=0$, the test is inconclusive.

LAGRANGE EQUATIONS

For the function $f(x, y)$ subject to the constraint $g(x, y)=k$, the Lagrange equations are

$$
f_{x}=\lambda g_{x} \quad f_{y}=\lambda g_{y} \quad g(x, y)=k
$$

LEAST-SQUARES LINE

The equation of the least-squares line for the n points $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$, is $y=m x+b$, where

$$
m=\frac{n \sum x y-\sum x \sum y}{n \sum x^{2}-\left(\sum x\right)^{2}} \quad b=\frac{\sum x^{2} \sum y-\sum x \sum x y}{n \sum x^{2}-\left(\sum x\right)^{2}}
$$

GEOMETRIC SERIES

If $0<|r|<1$, then

$$
\sum_{n=0}^{\infty} a r^{n}=\frac{a}{1-r}
$$

TAYLOR SERIES
The Taylor series of $f(x)$ about $x=a$ is the power series

$$
\sum_{n=0}^{\infty} a_{n}(x-a)^{n} \quad \text { where } \quad a_{n}=\frac{f^{(n)}(a)}{n!}
$$

Examples:

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}, \text { for }-\infty<x<\infty ; \quad \ln x=\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}(x-1)^{n}, \text { for } 0<x \leq 2
$$

