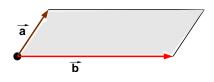
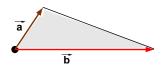

Study Guide # 1

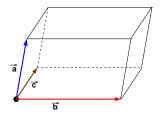
1. Vectors in \mathbb{R}^2 and \mathbb{R}^3

- (a) $\vec{\mathbf{v}} = \langle a, b, c \rangle = a \vec{\mathbf{i}} + b \vec{\mathbf{j}} + c \vec{\mathbf{k}}$; vector addition and subtraction geometrically using parallelograms spanned by $\vec{\mathbf{u}}$ and $\vec{\mathbf{v}}$; length or magnitude of $\vec{\mathbf{v}} = \langle a, b, c \rangle$, $|\vec{\mathbf{v}}| = \sqrt{a^2 + b^2 + c^2}$; directed vector from $P_0(x_0, y_0, z_0)$ to $P_1(x_1, y_1, z_1)$ given by $\vec{\mathbf{v}} = P_0P_1 = P_1 - P_0 = \langle x_1 - x_0, y_1 - y_0, z_1 - z_0 \rangle$.
- (b) Dot (or inner) product of $\vec{\mathbf{a}} = \langle a_1, a_2, a_3 \rangle$ and $\vec{\mathbf{b}} = \langle b_1, b_2, b_3 \rangle$: $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = a_1 b_1 + a_2 b_2 + a_3 b_3$; properties of dot product; useful identity: $\vec{\mathbf{a}} \cdot \vec{\mathbf{a}} = |\vec{\mathbf{a}}|^2$; angle between two vectors $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$: $\cos \theta = \frac{\vec{\mathbf{a}} \cdot \vec{\mathbf{b}}}{|\vec{\mathbf{a}}| |\vec{\mathbf{b}}|}$; $\vec{\mathbf{a}} \perp \vec{\mathbf{b}}$ if and only if $\vec{\mathbf{a}} \cdot \vec{\mathbf{b}} = 0$; the vector in \mathbb{R}^2 with length r with angle θ is $\vec{\mathbf{v}} = \langle r \cos \theta, r \sin \theta \rangle$:


(c) Projection of $\vec{\mathbf{b}}$ along $\vec{\mathbf{a}}$: $\operatorname{proj}_{\vec{\mathbf{a}}}\vec{\mathbf{b}} = \left\{\frac{\vec{\mathbf{a}}\cdot\vec{\mathbf{b}}}{|\vec{\mathbf{a}}|}\right\}\frac{\vec{\mathbf{a}}}{|\vec{\mathbf{a}}|}; \text{ Work} = \vec{\mathbf{F}}\cdot\vec{\mathbf{D}}.$

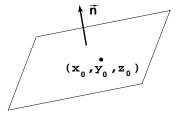

(d) Cross product (only for vectors in \mathbb{R}^3):

$$\vec{\mathbf{a}} \times \vec{\mathbf{b}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix} = \begin{vmatrix} a_2 & a_3 \\ b_2 & b_3 \end{vmatrix} \vec{\mathbf{i}} - \begin{vmatrix} a_1 & a_3 \\ b_1 & b_3 \end{vmatrix} \vec{\mathbf{j}} + \begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \vec{\mathbf{k}}$$


properties of cross products; $\vec{\mathbf{a}} \times \vec{\mathbf{b}}$ is **perpendicular** (orthogonal or normal) to both $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$; area of parallelogram spanned by $\vec{\mathbf{a}}$ and $\vec{\mathbf{b}}$ is $A = |\vec{\mathbf{a}} \times \vec{\mathbf{b}}|$:

the area of the triangle spanned is $A = \frac{1}{2} |\vec{\mathbf{a}} \times \vec{\mathbf{b}}|$:

Volume of the parallelopiped spanned by $\vec{\mathbf{a}}, \vec{\mathbf{b}}, \vec{\mathbf{c}}$ is $V = |\vec{\mathbf{a}} \cdot (\vec{\mathbf{b}} \times \vec{\mathbf{c}})|$:



2. Equation of a line L through $P_0(x_0, y_0, z_0)$ with direction vector $\vec{\mathbf{d}} = \langle a, b, c \rangle$:

Vector Form:
$$\vec{\mathbf{r}}(t) = \langle x_0, y_0, z_0 \rangle + t \, \vec{\mathbf{d}}.$$

Parametric Form:
$$\begin{cases} x = x_0 + a t \\ y = y_0 + b t \\ z = z_0 + c t \end{cases}$$
 $(\mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0)$

Symmetric Form:
$$\frac{x - x_0}{a} = \frac{y - y_0}{b} = \frac{z - z_0}{c}$$
. (If say $b = 0$, then $\frac{x - x_0}{a} = \frac{z - z_0}{c}$, $y = y_0$.)

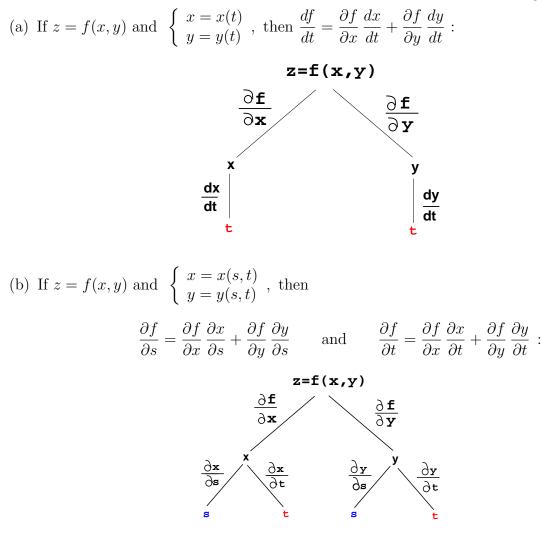
3. Equation of the plane through the point $P_0(x_0, y_0, z_0)$ and perpendicular to the vector $\vec{\mathbf{n}} = \langle a, b, c \rangle$ ($\vec{\mathbf{n}}$ is a *normal vector* to the plane) is $\langle (x - x_0), (y - y_0), (z - z_0) \rangle \cdot \vec{\mathbf{n}} = 0$; Sketching planes (consider x, y, z intercepts).

4. Quadric surfaces (can sketch them by considering various *traces*, i.e., curves resulting from the intersection of the surface with planes x = k, y = k and/or z = k); some generic equations have the form:

(a) Ellipsoid:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

(b) Elliptic Paraboloid: $\frac{z}{c} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$

(c) Hyperbolic Paraboloid (Saddle):
$$\frac{z}{c} = \frac{x^2}{a^2} - \frac{y^2}{b^2}$$


(d) Cone: $\frac{z^2}{c^2} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$

(e) Hyperboloid of One Sheet:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 1$$

(f) Hyperboloid of Two Sheets: $-\frac{x^2}{a^2} - \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

- 5. Vector-valued functions $\vec{\mathbf{r}}(t) = \langle f(t), g(t), h(t) \rangle$; tangent vector $\vec{\mathbf{r}}'(t)$ for smooth curves, unit tangent vector $\vec{\mathbf{T}}(t) = \frac{\vec{\mathbf{r}}'(t)}{|\vec{\mathbf{r}}'(t)|}$; unit normal vector $\vec{\mathbf{N}}(t) = \frac{\vec{\mathbf{T}}'(t)}{|\vec{\mathbf{T}}'(t)|}$ differentiation rules for vector functions, including:
 - (i) $\{\phi(t) \, \vec{\mathbf{v}}(t)\}' = \phi(t) \, \vec{\mathbf{v}}'(t) + \phi'(t) \, \vec{\mathbf{v}}(t)$, where $\phi(t)$ is a real-valued function
 - (ii) $(\vec{\mathbf{u}} \cdot \vec{\mathbf{v}})' = \vec{\mathbf{u}} \cdot \vec{\mathbf{v}}' + \vec{\mathbf{u}}' \cdot \vec{\mathbf{v}}$
 - (iii) $(\vec{\mathbf{u}} \times \vec{\mathbf{v}})' = \vec{\mathbf{u}} \times \vec{\mathbf{v}}' + \vec{\mathbf{u}}' \times \vec{\mathbf{v}}$
 - (iv) $\{\vec{\mathbf{v}}(\phi(t))\}' = \phi'(t) \vec{\mathbf{v}}'(\phi(t))$, where $\phi(t)$ is a real-valued function
- 6. Integrals of vector functions $\int \vec{\mathbf{r}}(t) dt = \left\langle \int f(t) dt, \int g(t) dt, \int h(t) dt \right\rangle$; arc length of curve parameterized by $\vec{\mathbf{r}}(t)$ is $L = \int_{a}^{b} |\vec{\mathbf{r}}'(t)| dt$; arc length function $s(t) = \int_{a}^{t} |\vec{\mathbf{r}}'(u)| du$; reparameterize by arc length: $\vec{\boldsymbol{\sigma}}(s) = \vec{\mathbf{r}}(t(s))$, where t(s) is the inverse of the arc length function s(t); the curvature of a curve parameterized by $\vec{\mathbf{r}}(t)$ is $\kappa = \frac{|\vec{\mathbf{T}}'(t)|}{|\vec{\mathbf{r}}'(t)|}$. Note: $\sqrt{\alpha^2} = |\alpha|$.
- **7.** $\vec{\mathbf{r}}(t)$ = position of a particle, $\vec{\mathbf{r}}'(t) = \vec{\mathbf{v}}(t)$ = velocity; $\vec{\mathbf{a}}(t) = \vec{\mathbf{v}}'(t) = \vec{\mathbf{r}}''(t)$ = acceleration; $|\vec{\mathbf{r}}'(t)| = |\vec{\mathbf{v}}(t)|$ = speed; Newton's 2^{nd} Law: $\vec{\mathbf{F}} = m \vec{\mathbf{a}}$.
- 8. Domain and range of a function f(x, y) and f(x, y, z); level curves (or contour curves) of f(x, y) are the curves f(x, y) = k; using level curves to sketch surfaces; level surfaces of f(x, y, z) are the surfaces f(x, y, z) = k.
- 10. Partial derivatives $\frac{\partial f}{\partial x}(x,y) = f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) f(x,y)}{h}$, $\frac{\partial f}{\partial y}(x,y) = f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$; higher order derivatives: $f_{xy} = \frac{\partial^2 f}{\partial y \partial x}$, $f_{yy} = \frac{\partial^2 f}{\partial y^2}$, $f_{yx} = \frac{\partial^2 f}{\partial x \partial y}$, etc; mixed partials.
- **11.** Equation of the tangent plane to the graph of z = f(x, y) at (x_0, y_0, z_0) is given by $z z_0 = f_x(x_0, y_0)(x x_0) + f_y(x_0, y_0)(y y_0).$

12. Total differential for z = f(x, y) is $dz = df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$; total differential for w = f(x, y, z) is $dw = df = \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy + \frac{\partial f}{\partial z} dz$; linear approximation for z = f(x, y) is given by $\Delta z \approx dz$, i.e., $f(x + \Delta x, y + \Delta y) - f(x, y) \approx \frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$, where $\Delta x = dx$, $\Delta y = dy$; Linearization of f(x, y) at (a, b) is given by $L(x, y) = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b)$; $L(x, y) \approx f(x, y)$ near (a, b). 13. Different forms of the Chain Rule: Form 1, Form 2; General Form: Tree diagrams. For example:

etc....

14. Implicit Differentiation and Directional Derivative:

Implicit Differentiation

<u>Part I</u>: If F(x,y) = 0 defines y as function of x (i.e., y = y(x)), then to compute $\frac{dy}{dx}$, differentiate both sides of the equation F(x,y) = 0 w.r.t. x and solve for $\frac{dy}{dx}$.

If F(x, y, z) = 0 defines z as function of x and y (i.e. z = z(x, y)), then to compute $\frac{\partial z}{\partial x}$, differentiate the equation F(x, y, z) = 0 w.r.t. x (hold y fixed) and solve for $\frac{\partial z}{\partial x}$. For $\frac{\partial z}{\partial y}$, differentiate the equation F(x, y, z) = 0 w.r.t. y (hold x fixed) and solve for $\frac{\partial z}{\partial y}$.

<u>Part II</u>: If F(x,y) = 0 defines y as function of $x \implies \frac{dy}{dx} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial y}}$;

while if F(x, y, z) = 0 defines z as function of x and $y \implies \frac{\partial z}{\partial x} = -\frac{\frac{\partial F}{\partial x}}{\frac{\partial F}{\partial z}}$ and $\frac{\partial z}{\partial y} = -\frac{\frac{\partial F}{\partial y}}{\frac{\partial F}{\partial z}}$.

Directional derivative

Directional derivative of f(x, y) at (x_0, y_0) in the direction $\vec{\mathbf{u}}$: $D_{\vec{\mathbf{u}}}f(x_0, y_0) = \nabla f(x_0, y_0) \cdot \vec{\mathbf{u}}$, where $\vec{\mathbf{u}}$ must be a <u>unit</u> vector.