MA 22000 Lesson 18 Notes (Calculus part of text) Section 4.3 (part 2) The Chain Rule

Chain Rule Forms: If y = f(u) and u = g(x), such that y = f(u) = f[g(x)], then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$ or $\frac{dy}{dx} = f'[g(x)] \cdot g'(x)$ Derivative of a composite function = derivative of the 'outer' function (with respect to u or g(x))times the derivative on the 'inner' function (with respect to x).

X	1	2	3	4
f(x)	2	3	1	2
f'(x)	-8	-9	-10	-11
g(x)	2	1	4	3
g'(x)	0	5	6	9

1) Use the table below to find: (a) $D_x(g[f(x)])$ at x = 2, (b) $D_x(g[f(x)])$ at x = 1.

a) $D_x(g[f(x)])$ (at x=2) = $g'[f(2)] \cdot f'(2)$

b)

Find the equation of the tangent lines to the graph of the given function at the given value of x.

2)
$$f(x) = (x^3 + 1)^{\frac{3}{2}}$$
 for $x = 2$ 3) $g(x) = x^2 \sqrt{x^4 - 12}$ for $x = 2$

Find all values of x for the given functions where the tangent line is horizontal.

4)
$$f(x) = 2\left(\frac{3x-6}{5x}\right)^2$$
 5) $h(x) = 2\sqrt{x} - \left(\sqrt{x}\right)^5$

6) A sum of \$2500 is deposited in an account with an interest rate of r% per year, compounded daily. At the end of 5 years, the balance in the account is given by $A = 2500 \left(1 + \frac{r}{36500}\right)^{1825}$. Find the rate of change of A with respect to r if r = 4%.

7) The value *V* of a machine *t* years after it is purchased is given by the equation $V(t) = \frac{10000}{\sqrt{t+1}}$. Find the rate of depreciation when (a) t = 1 and when (b) t = 3.