
MA 22000 Lesson 23 Notes 2nd half of textbook, Section 5.1 Increasing and Decreasing Functions

A function is **increasing** if its graph goes **up** from left to right and **decreasing** if its graph goes down from left to right. When describing where a function is increasing, use interval notation of x values (domain values, left to right). When describing where a function is decreasing, use interval notation of x values (domain values, left to right). Explanation of x values (domain values, left to right).

The FIGURE 2 below (also found in your textbook on page 253) shows 3 graphs (a, b, and c) where a graph is increasing and 3 graphs (d, e, and f) where a graph is decreasing. Increasing means 'rising' or 'climbing', always left to right. Decreasing means 'falling' or 'sliding down', always left to right. In an increasing function; as the x values get larger, so do the y values or the function values. In a decreasing function; as the x values get larger, the y values (function values) get smaller. Using 'algebra' language, the definitions of increasing or decreasing functions are found on page 253 of the textbook.

Example 1: Look at the graph below. Describe the interval(s) where the function is increasing and the interval(s) where the function is decreasing.

Using the first derivative to help determine intervals of increasing/decreasing:

Suppose a function f has a derivative at each point in an open interval; then

- 1) if f'(x) > 0 for each x in the interval, f is **increasing** on that interval.
- 2) if f'(x) < 0 for each x in the interval, f is **decreasing** on that interval.
- 3) if f'(x) = 0 for each x in the interval, f is **constant** on that interval (not increasing nor decreasing).

Critical Values and Critical Points

To find possible intervals of increasing or decreasing, we use **critical values**. The critical values of a function are those numbers in the domain of the function for which the derivative is zero or the derivative does not exist. Critical values are the *x*-coordinates of the critical points. A **critical point** is the ordered pair whose *x*-coordinate is the critical value *c* and whose *y*-coordinate is f(c); (c, f(c)). The critical values and a **sign chart** can be used to determine intervals of increasing, decreasing, or constant.

Example 2: Find the intervals, if any, where the following function is increasing and the intervals, if any, where the function is decreasing.

$$f(x) = \frac{2}{3}x^3 - x^2 - 4x + 2$$

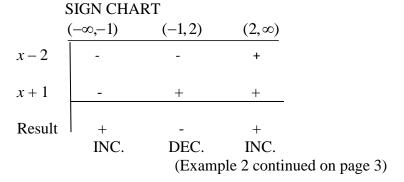
1) Find the critical value(s); values of x where the derivative is zero (or undefined).

$$f'(x) = 2x^{2} - 2x - 4$$

$$2x^{2} - 2x - 4 = 0$$

$$2(x^{2} - x - 2) = 0$$

$$(x - 2)(x + 1) = 0$$


$$x - 2 = 0 \quad x + 1 = 0$$

$$x = 2 \quad x = -1$$
 Note: Critical points would be $(2, -\frac{14}{3})$ and $(-1, \frac{13}{3})$.

The intervals to be checked would be $(-\infty, -1)$, (-1, 2), and $(2, \infty)$.

Make a sign chart, such as the one below.

2)

3) Give the answer.

The function is increasing on $(-\infty, -1) \cup (2, \infty)$ and decreasing on (-1, 2).

Example 3: Find all open intervals where the function below is increasing, decreasing, or constant. Write answers using interval notation. $g(x) = \frac{1}{4}x^4 - \frac{1}{2}x^2 + 2$

Example 4: Find all open intervals where the function below is increasing, decreasing, or constant. Write answers using interval notation.

$$y = x^4 + 8x^3 + 18x^2 - 8$$

Example 5: Find all open intervals where the function below is increasing, decreasing, or constant. Write answers using interval notation.

$$y = -\frac{3}{2}x + 2$$

Example 6: Find all open intervals where the function below is increasing, decreasing, or constant. Write answers using interval notation.

$$f(x) = \frac{x+3}{x-4}$$

Example 7: Find all open intervals where the function below is increasing, decreasing, or constant. Write answers using interval notation.

 $y = x^{2/3}$

Example 8: Find all open intervals where the function below is increasing, decreasing, or constant. Write answers using interval notation.

$$g(x) = x \cdot e^{-x^2}$$

Example 9:

A manufacturer of CD players has determined that the profit P(x) (in thousands of dollars) is related to the quantity x of CD players produced (in hundreds) per month by the model $P(x) = -(x-4)e^x - 4$, $0 < x \le 3.9$. At what production levels is the profit increasing? decreasing?

Example 10:

The percent of concentration of a drug in the bloodstream x hours after the drug is administered is given by $K(x) = \frac{4x}{3x^2 + 27}$. On what time intervals is the concentration of the drug increasing? decreasing?