MA 22400 FORMULAS
CONSUMERS’ AND PRODUCERS’ SURPLUS
qo0
CS = / D(q)dq — poqo
0

q0

PS = p,qo — S(q)dq
0

TRAPEZOIDAL RULE
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where a = x1,x9, 23,...,2,4+1 = b subdivides [a, b] into n equal subintervals of length Az =

THE SECOND DERIVATIVE TEST

Suppose f is a function of two variables x and y, and that all the second-order partial derivatives
are continuous. Let
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and suppose (a,b) is a critical point of f.
1. If D(a,b) <0, then f has a saddle point at (a,b),
2. If D(a,b) > 0 and fy;(a,b) < 0, then f has a relative maximum at (a,b).
3. If D(a,b) > 0 and fyz(a,b) > 0, then f has a relative minimum at (a,b).
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4. If D(a,b) = 0, the test is inconclusive.

LAGRANGE EQUATIONS
For the function f(z,y) subject to the constraint g(z,y) = k, the Lagrange equations are
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LEAST-SQUARES LINE

The equation of the least-squares line for the n points (z1,y1), (z2,y2), ... , (Tn,yn), is
y = mx + b, where
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GEOMETRIC SERIES

If 0 < |r| < 1, then
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TAYLOR SERIES
The Taylor series of f(z) about z = a is the power series
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