Study Guide # 3

You also need Study Guides # 1 and # 2 for the Final Exam

1. Line integral of a function f(x, y, z) along C, parameterized by x = x(t), y = y(t), z = z(t) and $a \le t \le b$, is

$$\int_C f(x,y,z) \ ds = \int_a^b f(x(t), y(t), z(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} \ dt.$$

(independent of orientation of C, other properties and applications of line integrals of f)

Remarks:

(a) $\int_C f(x,y,z) ds$ is sometimes called the "line integral of f with respect to arc length"

(b)
$$\int_C f(x, y, z) dx = \int_a^b f(x(t), y(t), z(t)) x'(t) dt$$

(c)
$$\int_C f(x, y, z) dy = \int_a^b f(x(t), y(t), z(t)) y'(t) dt$$

(d)
$$\int_C f(x, y, z) dy = \int_a^b f(x(t), y(t), z(t)) z'(t) dt$$

2. Line integral of vector field $\vec{\mathbf{F}}(x,y,z)$ along C, parameterized by $\vec{\mathbf{r}}(t)$ and $a \leq t \leq b$, is given by

$$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{a}^{b} \vec{\mathbf{F}}(\vec{\mathbf{r}}(t)) \cdot \vec{\mathbf{r}}'(t) dt.$$

(depends on orientation of C, other properties and applications of line integrals of f)

3. Connection between line integral of vector fields and line integral of functions:

$$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{C} (\vec{\mathbf{F}} \cdot \vec{\mathbf{T}}) \, ds$$

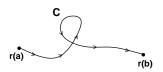
where $\vec{\mathbf{T}}$ is the unit tangent vector to the curve C.

4. If $\vec{F}(x, y, z) = P(x, y, z) \vec{i} + Q(x, y, z) \vec{j} + R(x, y, z) \vec{k}$, then

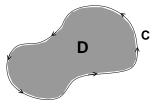
$$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{C} P(x, y, z) dx + Q(x, y, z) dy + R(x, y, z) dz;$$

Work = $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$.

5. Fundamental Theorem of Calculus for Line Integrals: $\int_C \nabla f \cdot d\vec{\mathbf{r}} = f(\vec{\mathbf{r}}(b)) - f(\vec{\mathbf{r}}(a))$:



- **6.** A vector field $\vec{\mathbf{F}}(x,y) = P(x,y)\vec{\mathbf{i}} + Q(x,y)\vec{\mathbf{j}}$ is conservative (i.e. $\vec{\mathbf{F}} = \nabla f$) if $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$; how to determine a potential function f if $\vec{\mathbf{F}}(\vec{\mathbf{x}}) = \nabla f(\vec{\mathbf{x}})$.
- 7. GREEN'S THEOREM: $\int_C P(x,y) dx + Q(x,y) dy = \iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dA$ (C = boundary of D):



As a consequence of Green's Theorem one has

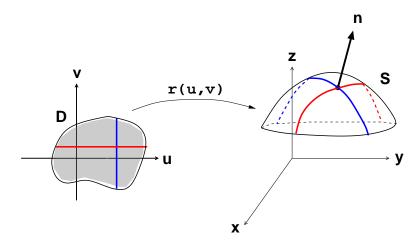
$$\frac{1}{2} \int_C x \, dy - y \, dx = \int_C x \, dy = -\int_C y \, dx = Area(D)$$

8. Del Operator: $\frac{\partial}{\partial x} \vec{\mathbf{i}} + \frac{\partial}{\partial y} \vec{\mathbf{j}} + \frac{\partial}{\partial z} \vec{\mathbf{k}}$; if $\vec{\mathbf{F}}(x, y, z) = P(x, y, z) \vec{\mathbf{i}} + Q(x, y, z) \vec{\mathbf{j}} + R(x, y, z) \vec{\mathbf{k}}$, then

$$\operatorname{curl} \vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}} = \begin{vmatrix} \vec{\mathbf{i}} & \vec{\mathbf{j}} & \vec{\mathbf{k}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} \quad \text{and} \quad \operatorname{div} \vec{\mathbf{F}} = \nabla \cdot \vec{\mathbf{F}} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$$

Properties of curl and divergence:

- (i) If curl $\vec{\mathbf{F}} = \vec{\mathbf{0}}$, then $\vec{\mathbf{F}}$ is a conservative vector field (i.e., $\vec{\mathbf{F}}(\vec{\mathbf{x}}) = \nabla f(\vec{\mathbf{x}})$).
- (ii) If curl $\vec{\mathbf{F}} = \vec{\mathbf{0}}$, then $\vec{\mathbf{F}}$ is *irrotational*; if div $\vec{\mathbf{F}} = 0$, then $\vec{\mathbf{F}}$ is *incompressible*.
- **9.** Parametric surface $S: \vec{\mathbf{r}}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$, where $(u,v) \in D$:



Normal vector to surface $S: \vec{\mathbf{n}} = \vec{\mathbf{r}}_u \times \vec{\mathbf{r}}_v;$ tangent planes and normal lines to parametric surfaces.

10. Surface area of a surface S:

(i)
$$A(S) = \iint_D |\vec{\mathbf{r}}_u \times \vec{\mathbf{r}}_v| dA$$

(ii) If S is the graph of z = h(x, y) above D, then $A(S) = \iint_D \sqrt{1 + (\partial h/\partial x)^2 + (\partial h/\partial y)^2} dA$;

<u>Remark</u>: $dS = |\vec{\mathbf{r}}_u \times \vec{\mathbf{r}}_v| dA = \text{differential of surface area; while } d\vec{\mathbf{S}} = (\vec{\mathbf{r}}_u \times \vec{\mathbf{r}}_v) dA$

11. The surface integral of f(x, y, z) over the surface S:

(i)
$$\iint_{S} f(x, y, z) dS = \iint_{D} f(\vec{\mathbf{r}}(u, v)) |\vec{\mathbf{r}}_{u} \times \vec{\mathbf{r}}_{v}| dA.$$

(ii) If S is the graph of z = h(x, y) above D, then

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(x, y, h(x, y)) \sqrt{1 + (\partial h/\partial x)^{2} + (\partial h/\partial y)^{2}} dA.$$

12. The surface integral of $\vec{\mathbf{F}}$ over the surface S (recall, $d\vec{\mathbf{S}} = (\vec{\mathbf{r}}_u \times \vec{\mathbf{r}}_v) \ dA$):

$$\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iint_{D} \vec{\mathbf{F}} \cdot (\vec{\mathbf{r}}_{u} \times \vec{\mathbf{r}}_{v}) \, dA.$$

$$\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iint_{S} (\vec{\mathbf{F}} \cdot \vec{\mathbf{n}}) \ dS = \iint_{D} \vec{\mathbf{F}} \cdot (\vec{\mathbf{r}}_{u} \times \vec{\mathbf{r}}_{v}) \ dA.$$

If S is the graph of z = h(x, y) above D, with $\vec{\mathbf{n}}$ oriented upward, and $\vec{\mathbf{F}} = \langle P, Q, R \rangle$, then

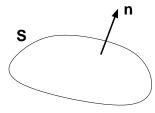
$$\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iint_{D} \left(-P \frac{\partial h}{\partial x} - Q \frac{\partial h}{\partial y} + R \right) dA.$$

(i) Connection between surface integral of a vector field and a function:

$$\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iint_{S} (\vec{\mathbf{F}} \cdot \vec{\mathbf{n}}) \ dS.$$

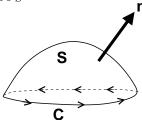
(The above gives another way to compute $\iint_S \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$)

(ii) $\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iint_{S} (\vec{\mathbf{F}} \cdot \vec{\mathbf{n}}) dS = \underline{\text{flux}} \text{ of } \vec{\mathbf{F}} \text{ across the surface } S.$



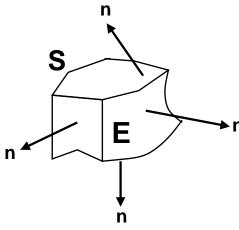
3

13. Stokes' Theorem: $\int_C \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \iint_S \operatorname{curl} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} \ (\operatorname{recall}, \operatorname{curl} \vec{\mathbf{F}} = \nabla \times \vec{\mathbf{F}}).$



 $\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = circulation \text{ of } \vec{\mathbf{F}} \text{ around } C.$

14. The Divergence Theorem/Gauss' Theorem: $\iint_S \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iiint_E \operatorname{div} \vec{\mathbf{F}} \ dV$ (recall, $\operatorname{div} \vec{\mathbf{F}} = \nabla \cdot \vec{\mathbf{F}}$).



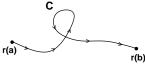
${f 15.}$ Summary of Line Integrals and Surface Integrals:

LINE INTEGRALS	Surface Integrals
$C: \vec{\mathbf{r}}(t)$, where $a \leq t \leq b$	$S: \vec{\mathbf{r}}(u,v), \text{ where } (u,v) \in D$
$ds = \vec{\mathbf{r}}'(t) dt = \text{differential of arc length}$	$dS = \vec{\mathbf{r}}_u \times \vec{\mathbf{r}}_v dA = \text{ differential of surface area}$
$\int_C ds = \text{length of } C$	$\iint_{S} dS = \text{ surface area of } S$
$\int_C f(x, y, z) ds = \int_a^b f(\vec{\mathbf{r}}(t)) \vec{\mathbf{r}}'(t) dt$	$\iint_{S} f(x, y, z) dS = \iint_{D} f(\vec{\mathbf{r}}(u, v)) \vec{\mathbf{r}}_{u} \times \vec{\mathbf{r}}_{v} dA$
(independent of orientation of C)	(independent of normal vector $\vec{\mathbf{n}}$)
$d\vec{\mathbf{r}} = \vec{\mathbf{r}}'(t) dt$	$d\vec{\mathbf{S}} = (\vec{\mathbf{r}}_u \times \vec{\mathbf{r}}_v) \ dA$
$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{a}^{b} \vec{\mathbf{F}}(\vec{\mathbf{r}}(t)) \cdot \vec{\mathbf{r}}'(t) dt$	$\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iint_{D} \vec{\mathbf{F}}(\vec{\mathbf{r}}(u,v)) \cdot (\vec{\mathbf{r}}_{u} \times \vec{\mathbf{r}}_{v}) \ dA$
(depends on orientation of C)	(depends on normal vector $\vec{\mathbf{n}}$)
$\int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}} = \int_{C} \left(\vec{\mathbf{F}} \cdot \vec{\mathbf{T}} \right) ds$	$\iint_{S} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \iint_{S} \left(\vec{\mathbf{F}} \cdot \vec{\mathbf{n}} \right) dS$
The <i>circulation</i> of $\vec{\mathbf{F}}$ around C	The flux of $\vec{\mathbf{F}}$ across S in direction $\vec{\mathbf{n}}$

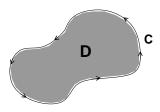
16. Integration Theorems:

Fundamental Theorem of Calculus: $\int_a^b F'(x) dx = F(b) - F(a)$

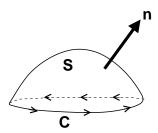
Fundamental Theorem of Calculus For Line Integrals: $\int_a^b \nabla f \cdot d\vec{\mathbf{r}} = f(\vec{\mathbf{r}}(b)) - f(\vec{\mathbf{r}}(a))$



 $\underline{\text{Green's Theorem}} \colon \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \ dA = \int_C P(x,y) \, dx + Q(x,y) \, dy$



Stokes' Theorem: $\iint_{S} \operatorname{curl} \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}} = \int_{C} \vec{\mathbf{F}} \cdot d\vec{\mathbf{r}}$



DIVERGENCE THEOREM: $\iiint_E \operatorname{div} \vec{\mathbf{F}} \ dV = \iint_S \vec{\mathbf{F}} \cdot d\vec{\mathbf{S}}$

