MA 15200 Lesson 26 Section 2.7

This lesson is on inverse functions. Examine the temperature formulas below.

$$
C=\frac{5}{9}(F-32)
$$

$$
F=\frac{9}{5} C+32
$$

$$
C=\frac{5}{9}(50-32)
$$

Replace F in the first equation with 50°.

$$
\begin{aligned}
& C=\frac{5}{9}(18) \\
& C=10 \\
& F=\frac{9}{5}(10)+32
\end{aligned}
$$

Now, replace C in the second with $10^{\circ} . \quad F=18+32$

$$
F=50
$$

Notice these functions do opposite things. The first equation turned $50^{\circ} \mathrm{F}$ to $10^{\circ} \mathrm{C}$. The second equation turned $10^{\circ} \mathrm{C}$ back to $50^{\circ} \mathrm{F}$. Such functions are called inverse functions.

Here are two other functions that are inverses of each other.

$$
y=2 x+3 \text { and } y=\frac{x-3}{2}
$$

Notice that in the first function a number is multiplied by 2 , then 3 is added to the result. In the second function 3 is subtracted from a number, then divided by 2 . Begin with 5 as the number in the first function. Multiply by 2 , and then add 3 ; the result is 13 . Now, let 13 be the number in the second function. Subtract 3, divide by 2 ; the result is 5 (the original number selected for the first function).

Let the first equation above be $f(x)=2 x+3$ and the second be $g(x)=\frac{x-3}{2}$. Examine:

$$
\begin{aligned}
& f(g(x))=f\left(\frac{x-3}{2}\right)=2\left(\frac{x-3}{2}\right)+3=x-3+3=x \\
& g(f(x))=g(2 x+3)=\frac{2 x+3-3}{2}=\frac{2 x}{2}=x
\end{aligned}
$$

The composition of two inverse functions of x will always be x !

I Verifying Inverse Functions

As demonstrated above, when two functions are inverses of each other, their composition functions (both $f(g(x))$ and $g(f(x))$ equal x. To verify (or prove) that two functions are inverses, find both compositions and show they equal x.

Ex 1: Determine if the following functions are inverses of each other.
a) $f(x)=4 x+5, g(x)=\frac{x-5}{4}$
d) $f(x)=\frac{3}{x}+4, g(x)=\frac{3}{x-4}$
b) $f(x)=\frac{x+1}{x}, g(x)=\frac{1}{x+1}$
e) $f(x)=\sqrt[3]{x-5}, g(x)=x^{3}+5$
c) $f(x)=\frac{1}{x+1}, \quad g(x)=x+1$

Definition of the Inverse of a Function:

Let f and g be two functions such that $f(g(x))=x$ for every x in the domain of g and $g(f(x))=x$ for every x in the domain of f.
The function g is called the inverse of function \boldsymbol{f} and is denoted by f^{-1} (read f inverse).
Therefore $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$. The domain of f is equal to the range of f^{-1}, and vice-versa.

Note: The notation f^{-1} does not mean $\frac{1}{f}$. The -1 is not an exponent, it is a notation.

Below is a picture of inverse functions.
\mathbf{X}
Y

There is also a good picture in Figure 2.54 on page 285 of the textbook.

II Finding the Inverse of a Function

To find the inverse of a function \boldsymbol{f} follow these steps.

1. Replace $f(x)$ with y in the equation.
2. Interchange x and y.
3. Solve for y. If this equation does not define y as a function of x, the function f does not have an inverse function and this procedure ends. If this equation does define y as a function of x, the function f has an inverse function.
4. If the function does have an inverse, replace the y in step 3 with $f^{-1}(x)$.

Ex 2: Find the inverse of each function or verify that it does not have an inverse.
a) $f(x)=2 x-3$
b) $f(x)=\frac{2}{1+x}$
c) $f(x)=\frac{x+2}{x}$
d) $f(x)=\frac{1}{x}+5$
e) $\quad f(x)=x^{3}+2$

In order for a function to have an inverse, it must be a 1-to-1 function, which means for each x in the domain, there is only $1 y$ in the range (definition of function) and for each y in the range, there is only $1 x$ in the domain.

One-to-one Functions: A function f from a set X to a set Y is called one-to-one if and only if different numbers in the domain of f have different outputs in the range of f. If the graph of the function f is known, the graph must pass not only the vertical line test, but the horizontal line test as well.

Ex 3: Determine if these graphs represent 1-to-1 functions.
a)

b)

IV Graphs of Inverse Functions

There is a relationship between the graph of a 1-1 function f and its inverse f^{-1}. If the ordered pair (a, b) is on the graph of function f, the ordered pair (b, a) would be on the graph of function f^{-1}. These points would be symmetric with respect to the line $y=x$. The graph of f^{-1} is a reflection of the graph of f about the line $y=x$.

Ex 4: Graph the function $f(x)=-2 x+4$ Use key points of that graph to sketch the graph of the inverse of the function. Sketch in the line $y=x$ to show the symmetry about that line.

Ex 5: Use the graph of the function below to sketch its inverse on the same coordinate plane.

