This lesson is on the **properties of logarithms.** Properties of logarithms model the properties of exponents.

I Product Rule

Product Rule of Exponents: $b^m b^n = b^{m+n}$

Notice: When the bases were the same, the **exponents were added** when multiplication was performed. Likewise **logarithms are added** when multiplication is performed in the argument.

Product Rule of Logarithms: $\log_b(MN) = \log_b M + \log_b N$ In words, the logarithm of a product is the sum of the logarithms.When a single logarithm is written using this product rule,
we say we are expanding the logarithmic expression.

Informal Proof: log 100 = 2 log 1000 = 3 log(1001000) = log(100,000) = 5 = 2+3= log 100 + log 1000

 Ex 1:
 Assume all variables represent positive values.

 Use the product rule to expand each expression and simplify where possible.

a)
$$\log_2(7r) =$$

- b) $\log_b(2x^2y) =$
- c) $\log(100ab) =$
- d) $\ln(20e^5) =$

II Quotient Rule

Quotient Rule for Exponents: $\frac{b^m}{b^n} = b^{m-n}$

Notice: When the bases were the same, the **exponents were subtracted** when division was performed. Likewise, **logarithms are subtracted** when division is performed in the argument.

Quotient Rule for Logarithms: $\log_b \left(\frac{M}{N}\right) = \log_b M - \log_b N$ $\log_b \frac{M}{N} \neq \frac{\log_b M}{\log_b N}$

In words, the logarithm of a quotient is the difference of the logarithms.

We can also **expand a logarithm** by using the quotient rule.

Ex 2: Assume all variables represent positive values. Use the quotient rule to expand each logarithm and **simplify where possible.**

Note: Our text and online homework does not usually use parenthesis around the argument. However, it would be better to write as in the following.

 $\ln\left(\frac{4x^3}{x}\right)$

a) $\log_3\left(\frac{9}{y}\right)$

b)
$$\log\left(\frac{x}{1000}\right)$$

III Power Rule

Power Rule for Exponents: $(b^m)^n = b^{mn}$

Note: When a power is raised to another power, the **exponents are multiplied**. Likewise, when a logarithm has an exponent in the argument, **the exponent is multiplied by the logarithm**.

Power Rule for Logarithms: $\log_b M^p = p \log_b M$

In words, the logarithm of a power is the product of the exponent and the logarithm.

We can also expand a logarithm by using the power rule.

Ex 3: Assume all variable represent positive values. Use the power rule to expand each logarithm and **simplify where possible.** *a*) $\log x^8 =$

b)
$$\log_5(25^3) =$$

c)
$$\ln \sqrt{y} =$$

IV Here is a summary of all the properties of logarithms.

Assume all variables represent positive values and that all bases are positive number
(not 1).
1.
$$\log_b(MN) = \log_b M + \log_b N$$
 Product Rule
2. $\log_b\left(\frac{M}{N}\right) = \log_b M - \log_b N$ Quotient Rule
3. $\log_b(M^p) = p \log_b M$ Power Rule

 $\underline{Ex 4:}$ Use the properties to **expand** each logarithmic expression. Assume all variables represent positive values.

a)
$$\log \frac{xy}{\sqrt{z}} =$$

$$b) \qquad \ln\frac{4x^3}{yz^5} =$$

c)
$$\log_2 3\sqrt{xy} =$$

$$d) \quad \log_3\left(27x^2\sqrt[3]{y}\right)$$

In opposite of expanding a logarithmic expression is **condensing a logarithmic expression**. This is writing a logarithmic expression as a single logarithm.

- <u>Ex 5</u>: Condense each expression. In other words, write as a single logarithm. Assume all variables represent positive values.
 - a) $\log 3 \log x + 2\log y \frac{1}{2}\log z =$

b)
$$\frac{1}{3}\log(x-2) + 2\log x - 2\log 4 =$$

c)
$$\frac{1}{2}(\ln x + 3\ln y) - 3\ln(x+2)$$

- <u>Ex 6:</u> If $\log_b m = 2.3892$, $\log_b n = -1.2389$, and $\log_b r = 0.8881$, use the properties of logs to find the following values.
 - a) $\log_b(m^2n) =$

b)
$$\log_b\left(\frac{\sqrt{n}}{r}\right) =$$

- Ex 7: If $\log_b 8 = 1.8928$, $\log_b 11 = 2.1827$, and $\log_b 2 = 0.6309$. Use these values and the properties of logs to find the following values.
 - a) $\log_b 4 =$

 $b) \quad \log_b 88 =$ There is more than 1 way to determine these values. $c) \quad \log_b 121 =$ $d) \quad \log_b 44 =$

> **Ex 8:** Let $\log_2 4 = A$ and $\log_2 5 = B$. Write each expression in terms of A and/or B. a) $\log_2(125) =$

b)
$$\log_2\left(\frac{5}{4}\right) =$$

V Change of Base Formula

Your scientific calculator will approximate or find common logarithms (base 10) or natural logarithms (base e). How can logarithms with other bases be approximated?

$$\log_b M = \frac{\log M}{\log b}$$
 or $\frac{\ln M}{\ln b}$

Note:	log	(\underline{M})	$\int \log M$
		$\left(\overline{N}\right)$	$\int \frac{1}{\log N}$

The formula above is known as the change of base formula.

Ex 9: Approximate each logarithm to 4 decimal places.

a)
$$\log_3(22.8) =$$

b)
$$\log_{0.2}(285) =$$