## Summer MA 15200 Lesson 27, Sections 3.1 and Appexdix H

If a parabola opens downward, the vertex is the highest point of the graph. The *y*-coordinate of that vertex is the largest value in the range of the function. That *y*-coordinate value is called the maximum of the function or equation and that maximum occurs when x = h. There are several real life applications where a maximum value can be found by writing an equation for a parabola and finding its vertex.

## It is important when solving these applied problems that you understand what that the h of the vertex represents the x-coordinate and the k of the vertex represents the y-coordinate. Examine the following quadratic functions.

 $P(x) = -0.02x^2 + 4x + 12$  This function represents a profit of a company that produces and sells x items. Each ordered pair is of the form (x, P) or (# items, profit) After the vertex (h, k) is found, the h represents the number of items (x) made and sold to get a maximum profit. The k (y or P(x)) is that maximum profit.

 $A(w) = -2w^2 + 650w$  This is an area of a region as a function of its width w, where L = 650 - 2w Each ordered pair is of the form (w, A) or (width, area). After the vertex (h, k) is found, the *h* represents the width that gives a maximum area. (Length could then be found by solving for *L*.) The *k* represents the maximum area.

Ex 1: A room in a home has a parabolic doorway with an equation

 $h = h(x) = -\frac{1}{100}x^2 + 2$  where x is horizontal distance (in meters) from the center of the doorway and h is height in meters. Find the maximum height of the doorway.

(0,0)

Ordered pairs are of the form (x, H) or (horiz. d,height). h = horizontal distance from center of base and k = maximum height. Ex 2: A gardener has 100 feet of fencing for a rectangular flower garden. Write an equation for the area of the garden. Find the dimensions of the garden that would give a maximum area. What is that area?

We need to write an area equation as a function of either length or width. Ordered pairs will be of the form (w or L, A). The h of the vertex represents the width or length and the k of the vertex represents the maximum area of the garden.

 $\underline{Ex 3:}$  A farmer has 1200 feet of fencing for a rectangular area adjacent to a barn, where the barn will be used as one side of the area. (See the diagram.) Assume the barn is as long or longer than the length parallel to it.

| barn |  |  |
|------|--|--|
|      |  |  |

Write an equation for the total area. What dimensions of the area would give a maximum total area?

<u>Ex 4:</u> A hotel with 200 rooms is filled every night when the room rate is \$90. Experience has shown that for every \$5 increase in cost, 10 fewer rooms will be occupied. Let n = number of \$5 increases in room cost and write an equation to represent the nightly income from the rooms. Find the cost per room that will make the income a maximum? What is that maximum income?

| # inc. | cost/room | # rooms |
|--------|-----------|---------|
| 0      | 90        | 200     |
| 1      | 95        | 190     |
| 2      | 100       | 180     |
|        |           |         |
|        |           |         |
| n      |           |         |

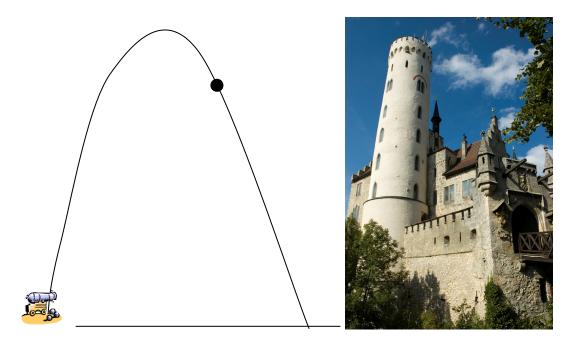
Write a function for income based on the number of \$5 increases in room cost.

Ex 5: A local store that sells deli sandwiches has weekly fixed costs of \$650, and variable costs for making each sandwich of \$0.90 per sandwich. The weekly revenue that the store collects is given by  $R(x) = -0.003x^2 + 6x$ , where x is the number of deli sandwiches made and sold.

Write a profit function to represent the weekly profit of the store as a function of the number of sandwiches sold. How many sandwiches have to be made and sold in order for the store to have a maximum profit? What is that maximum profit?

Ex 6: A rocket is fired upward from a point well above the ground. Its height in feet above the ground after *t* seconds is given by  $h = -16t^2 + 48t + 288$ . In how many seconds will the rocket reach its maximum height? What is that maximum height? When will the rocket hit the ground?

Ex 7: A bus on a route between two cities charges of fare of \$80 per person plus \$5 per person for each unsold bus seats. If the bus holds 40 passengers, let *x* represent the number of unsold seats and write a function to represent the total revenue received for the bus trip.


Find the number of unsold seats that result in maximum revenue and what that revenue would be.

A parabola's standard equation can be found given the coordinates of the vertex and another point of the parabola. The value of *a* must be found by substituting the coordinates of the vertex and point in standard form  $y = a(x-h)^2 + k$ .

<u>Ex8:</u> Find the equation in standard form for each parabola described. *a*) vertex : (2,5) point : (0,0)

*b*) vertex : (-2,2), point : (4,-7)

<u>Ex 9:</u> A cannonball follows the parabolic trajectory path and reaches a height of 225 feet. The cannon is located at the origin (0, 0). There is a castle is 35 feet away from the cannon. If the cannonball falls 5 feet short of the castle, find an equation for the path of the cannonball.

