1. Simplify $\frac{\frac{15}{5}}{1-\frac{1}{2}}$
A. $\frac{2}{3}$
B. 2
C. $\frac{3}{2}$
D. 6
E. None of the above
2. Factor $16 x^{2}-4 y^{8}$
A. $\left(4 x-y^{2}\right)\left(4 x+y^{2}\right)$
B. $\left(4 x-2 y^{4}\right)^{2}$
C. $4\left(2 x-y^{4}\right)\left(2 x+y^{4}\right)$
D. $4\left(2 x-y^{2}\right)$
E. None of the above
3. Simplify $\left(\frac{4 a^{4} b^{8}}{c^{-2}}\right)^{-\frac{1}{2}}$
A. $\frac{1}{2 a^{2} b^{4} c}$
B. $\frac{2 a^{2} b^{4}}{c}$
C. $\frac{a^{4} b^{3}}{16 c^{2}}$
D. $\frac{c}{2 a^{2} b^{4}}$
E. None of the above
4. Subtract and simplify.

$$
\frac{3 x}{3 x+1}-\frac{x}{x-2}
$$

A. $\frac{2 x^{2}-1}{(3 x+1)(x-2)}$
B. $\frac{-3 x^{2}}{(3 x+1)(x-2)}$
C. $\frac{-7 x}{(3 x+1)(x-2)}$
D. $\frac{2 x}{(3 x+1)(x-2)}$
E. None of the above
5. Divide and simplify.

$$
\frac{x-2}{x^{2}-2 x-3} \div \frac{x^{2}-x-2}{x^{2}-9}
$$

A. $\frac{(x-2)^{2}}{(x-3)^{2}(x+3)}$
B. $\frac{x+3}{(x+1)^{2}}$
C. $\frac{x+3}{x+1}$
D. $\frac{1}{x+3}$
E. None of the above
6. A job takes 4 hours for two people working together. If one person works alone he can do the job in 6 hours. How long will it take the other person working alone to complete the job?
A. $4 h r s$.
B. 6 hrs .
C. 8 hrs .
D. 10 hrs .
E. None of the above
7. Simplify; do not include negative exponents in your final answer.

$$
\frac{x y^{-1}}{(x+y)^{-1}}
$$

A. $\frac{x(x+y)}{y}$
B. $\frac{x^{2}}{x+y}$
C. $\frac{x+y}{x y}$
D. $\frac{x y}{x+y}$
E. None of the above
8. Simplify by rationalizing the denominator.

$$
\frac{\sqrt{3}}{2+\sqrt{3}}
$$

A. $\frac{1}{2}$
B. 2
C. $2 \sqrt{3}-3$
D. $\sqrt{3}+2$
E. $\frac{2 \sqrt{3}-3}{7}$
9. Let x and y be two consecutive positive integers such that x is less than y and the difference of their squares is 145 . Find x.
A. 73
B. 72
C. 12
D. 8
E. None of the above
10. If $A=P(1+r t)$, then $t=$
A. $\frac{A-P}{r}$
B. $A-P$
C. $\frac{A-P}{P}$
D. $\frac{A}{P}$
E. None of the above
11. A truck enters a freeway traveling 40 mph . One hour later a car enters the same freeway traveling 55 mph . After how many miles will the car overtake the truck?
A. $146 \frac{2}{3}$ miles
B. $201 \frac{2}{3}$ miles
C. 120 miles
D. $106 \frac{2}{3}$ miles
E. None of the above
12. A square of side x is inscribed in a circle. Express the area A of the circle as a function of x.
A. $A=\frac{\pi}{2} x^{2}$
B. $A=x^{2}$
C. $A=\pi x^{2}$
D. $A=\frac{\pi}{4} x^{2}$
E. None of the above
13. Solve for p :

$$
\frac{4}{2 p-3}+\frac{10}{4 p^{2}-9}=\frac{1}{2 p+3}
$$

A. $p=-\frac{3}{2}$
B. $p=\frac{5}{6}$
C. There is no solution
D. $p=-\frac{25}{6}$
E. None of the above
14. How many ml of a 50% acid solution should be added to 40 ml of a 20% acid solution to obtain a solution that is 25% acid?
15. Solve for x and list all the real solutions:

$$
x=\sqrt{14+5 x}
$$

A. $x=3, x=14$
B. $x=-2, x=7$
C. $x=-2$
D. $x=\frac{14}{3}$
E. None of the above
16. Solve for m and list all solutions (real and/or imaginary):

$$
m^{4}-m^{2}-6=0
$$

A. $m=2,3$
B. $m=-2, \pm \sqrt{3}$
C. $m= \pm \sqrt{3}, \pm 2 i$
D. $m= \pm \sqrt{3}, \pm \sqrt{2} i$
E. None of the above
17. Solve the inequality and express the solution in terms of intervals

$$
3 x-2>6 x+1
$$

A. $(-\infty,-1)$
B. $(-1,1)$
C. $(\infty,-1]$
D. $(-1, \infty)$
E. None of the above
18. Solve the inequality:

$$
|6-2 x| \leq 3
$$

A. $x \geq \frac{3}{2}$
B. $x \leq \frac{3}{2}$
C. $\frac{3}{2} \leq x \leq \frac{9}{2}$
D. $-\frac{9}{2} \leq x \leq-\frac{3}{2}$
E. None of the above
19. Find all values of k so that the solutions of the following equation are real numbers:

$$
2 x^{2}-4 x+k=0
$$

A. $k=2$
B. $k>2$
C. $k \geq 2$
D. $k \leq 2$
E. None of the above
20. The base of a triangle is three inches more than its height. If each is increased by 3 inches the area is 14 square inches. Find the original base (b) and the original height (h) in inches.
A. $b=4, h=1$
B. $b=9, h=6$
C. $b=8, h=5$
D. $b=\frac{7}{2}, h=\frac{1}{2}$
E. None of the above
21. Solve for x :

$$
\begin{gathered}
2 x^{2}+y^{2}=1 \\
x-y=1
\end{gathered}
$$

A. $x=\frac{2}{3}$
B. $x=0, \frac{2}{3}$
C. $x=-\frac{2}{3}$
D. $x=0, \frac{3}{2}$
E. None of the above
22. If the point $(2,3)$ is midway between A and B and the point A has coordinates $(1,-2)$, find the coordinates of the point B.
A. $(1,5)$
B. $(3,1)$
C. $(3,8)$
D. $\left(\frac{3}{2}, \frac{1}{2}\right)$
E. None of the above
23. The slope of a line perpendicular to the line drawn is:

A. $\frac{1}{3}$
B. $-\frac{1}{3}$
C. -3
D. 3
E. None of the above
24. If m varies directly as the product of x and y and inversely as z, find the constant of proportionality k if $m=3$ when $x=4, y=2$, and $z=6$.
A. $k=\frac{1}{6}$
B. $k=\frac{9}{4}$
C. $k=3$
D. $k=\frac{1}{4}$
E. None of the above
25. Give the equation of the line in slope-intercept form which is parallel to the line $2 x-3 y=7$ and contains the point $(4,-1)$.
A. $y=\frac{3}{2} x-7$
B. $y=-\frac{2}{3} x+\frac{5}{2}$
C. $y=\frac{2}{3} x-\frac{11}{3}$
D. $y=\frac{2}{3} x+\frac{14}{3}$
E. None of the above
26. The equation for the circle show is:

A. $x^{2}+y^{2}=4$
B. $x^{2}+y^{2}-4 y=0$
C. $x^{2}(y-2)=4$
D. $x^{2}+y^{2}+4 y=0$
E. $x^{2}+y^{2}+4 x+4 y-8=0$
27. Determine $(g \circ f)(x)$ for the following functions: $f(x)=1-\sqrt{x}$ and $g(x)=\frac{1}{x}$.
A. $-\sqrt{x}$
B. $1-\sqrt{\frac{1}{x}}$
C. $1-\sqrt{x}$
D. $\frac{1}{1-\sqrt{x}}$
E. $\frac{1}{\sqrt{x}}$
28. If $f(x)=\frac{x}{x^{2}+1}$, find $\frac{1}{f(3)}$.
A. $\frac{3}{10}$
B. $\frac{3}{16}$
C. $\frac{16}{3}$
D. $\frac{10}{3}$
E. None of the above
29. The graph below could best be described by which equation?

A. $y=2 x^{2}+2$
B. $y=-2 x^{2}+2$
C. $y=-2 x^{2}-2$
D. $y=2 x^{2}-2$
E. $y=-(x-2)^{2}$
30. The figure below most closely resembles the graph of which function?

A. $y=\left(\frac{1}{2}\right)^{x}$
B. $y=2^{x}$
C. $y=-2^{x}$
D. $y=-\left(\frac{1}{2}\right)^{x}$
E. $y=1-2^{x}$
31.Express as one logarithm: $\log _{b} y^{3}+\log _{b} y^{2}-\log _{b} y^{4}$
A. $\log _{b} y^{2}$
B. $\log _{b} y$
C. $\log _{b}\left(y^{3}+y^{2}-y^{4}\right)$
D. $\log _{b}\left(\frac{y^{3}+y^{2}}{y^{4}}\right)$
E. None of the above
32. Which are true of the function $f(x)=\log _{a} x$ if $a>1$? List all which are correct.
I. f is an increasing function
II. $\quad f$ has a as an x-intercept
A. I, II, and III
III. f has 1 as a y-intercept
IV. The domain of f is $(0, \infty)$
B. I and II
C. II and IV
D. I and IV
E. I and III
33. Which of the following is equivalent to $\log \left(\frac{432}{\sqrt{0.095} \sqrt[3]{72.1}}\right)$?
A. $\log 432-\frac{1}{2} \log 0.095-3 \log 72.1$
B. $\log 432-\frac{1}{2} \log 0.095-\frac{1}{3} \log 72.1$
C. $\log 432-2 \log 0.095+3 \log 72.1$
D. $\log 432-\frac{1}{2} \log 0.095+\frac{1}{3} \log 72.1$
E. $\log 432-2 \log 0.095-3 \log 72.1$
34. Solve for $x: 3^{x-5}=4$.
A. $x=\log 4+5 \log 3$
B. $x=5+\log \left(\frac{4}{3}\right)$
C. $x=5+\frac{\log 4}{\log 3}$
D. $x=5+\log 4$
E. $x=\frac{5+\log 4}{\log 3}$
35. Solve for $x: \log _{3} \sqrt{2 x+3}=2$
A. $x=\frac{5}{2}$
B. $x=\frac{3}{2}$
C. $x=39$
D. $x=17$
E. $x=3$
36. Given that $\log _{3} m=8, \log _{3} n=10$, and $\log _{3} p=6$, calculate $\log _{3}\left(\frac{\sqrt{m n}}{p^{3}}\right)$
A. -9
B. $\frac{2 \sqrt{5}}{27}$
C. 22
D. -56
E. -4
37. The graph of $y=2+2^{x}$ crosses the y-axis at
A. 0
B. 1
C. 2
D. 3
E. 4
38. Which of the following looks most like the graph of $y=x^{2}(x-1)(x+1)^{2}$

39. Which set of equations below has no solution?
A. $\left\{\begin{array}{l}2 x+3 y=8 \\ 3 x-2 y=4\end{array}\right.$
B. $\left\{\begin{array}{c}3 x+4 y=5 \\ 6 x+4 y=10\end{array}\right.$
C. $\left\{\begin{array}{c}2 x-3 y=4 \\ -4 x+6 y=3\end{array}\right.$
D. $\left\{\begin{array}{c}x-4 y=6 \\ 2 x-4 y=6\end{array}\right.$
E. $\left\{\begin{array}{l}3 x-2 y=4 \\ 6 x+4 y=8\end{array}\right.$
40. Determine where the two lines $x+4 y=3$ and $2 x-6 y=8$ intersect.
A. $\left(-\frac{12}{5}, \frac{6}{5}\right)$
B. $\left(\frac{1}{3}, \frac{4}{9}\right)$
C. $\left(\frac{2}{7}, \frac{5}{7}\right)$
D. $\left(\frac{1}{8}, \frac{2}{5}\right)$
E. None of the above
41. The value of a rare book is increasing linearly. It was worth $\$ 54$ in 1981 and $\$ 62$ in 1983. What is the formula for the value (v) of the book t years after 1980 ?
A. $v=50+4 t$
B. $v=48+3 t$
C. $v=50+3 t$
D. $v=51+4 t$
E. None of the above
42. If $f(x)=x^{2}-2 x+4$ then $\frac{f(x+h)-f(x)}{h}=$
A. $2 x+h-2$
B. $x+2 h-2$
C. $x+2 h+2$
D. $2 x-h-2$
E. $2 x-h+2$
43. An aquarium in the shape of a rectangular box is to have a height of 1.5 feet and a volume of 6 cubic feet. Let x denote the length of the base and y the width of the base. Express y as a function of x.
A. $y=1.5 x$
B. $y=\frac{4}{x}$
C. $y=x^{2}$
D. $y=\frac{6}{x}$
E. $y=9 x$
44. If $\log _{x} 2=5$, solve for x. Write your answer correct to four decimal places.
A. 2.2361
B. 1.4142
C. 0.6990
D. 1.1487
E. 0.3010

ANSWERS

1. D; 2. C; 3. A; 4. C; 5. B; 6. E; 7. A; 8. C; 9. B; 10. E; 11. A; 12. A; 13. D; 14. B; 15. E; 16. D; 17. A; 18. C; 19. D; 20. A; 21. B; 22. C; 23. D; 24. B; 25. C; 26. B; 27. D; 28. D; 29. B; 30. A; 31. B; 32. D; 33. B; 34. C; 35. C; 36. A; 37. D; 38. A; 39. C; 40. E; 41. A; 42. A; 43. B; 44. D
