MA 26600 ORDINARY DIFFERENTIAL EQUATIONS FINAL EXAM (SUMMER 2012) AUGUST 2, 2012

NAME _____ PURDUE ID NO. _____

Circle the name of your INSTRUCTOR.

Shuhao Cao	Alan Legg	Richard Eden
Sec. 0003	Sec. 0001	Sec. 0002
8:40 am - 9:40 am	$9{:}50~\mathrm{am}$ - $10{:}50~\mathrm{am}$	11:00 am - 12:00 pm

INSTRUCTIONS

- 1. There are 17 problems and a total of 13 pages (after this cover page).
- 2. The last page has a table of Laplace transforms. You may detach this page from the exam for easy reference.
- 3. This exam has two parts.
 - (a) Problems 1 to 10 are multiple choice questions, each worth 8 points. Total: 80 points. You will be graded for your answer, not your solution. Write the letter of your answer in the box provided.
 - (b) Problems 11 to 17 require written detailed solutions. Total: 120 points. Put your answer in the provided box. Partial credit (subject to your instructor's judgment) will be given for sufficient progress leading to the correct answer.
- 4. If you need more space for your work, use the back of a page.
- 5. Read the problems carefully. The exam is self-explanatory.
- 6. No calculators are allowed.
- 7. DON'T TURN THE PAGE YET UNTIL TOLD TO DO SO.

Good luck!

=

	$f(t) = \mathcal{L}^{-1}\{F(s)\}$	$F(s) = \mathcal{L}\{f(t)\}$
1.	1	$\frac{1}{s}$
2.	e^{at}	$\frac{1}{s-a}$
3.	t^n , $n = \text{positive integer}$	$\frac{n!}{s^{n+1}}$
4.	$t^p, p > -1$	$\frac{\Gamma(p+1)}{s^{p+1}}$
5.	$\sin at$	$\frac{a}{s^2 + a^2}$
6.	$\cos at$	$\frac{s}{s^2 + a^2}$
7.	$\sinh at$	$\frac{a}{s^2 - a^2}$
8.	$\cosh at$	$\frac{s}{s^2 - a^2}$
9.	$e^{at}\sin bt$	$\frac{b}{(s-a)^2 + b^2}$
10.	$e^{at}\cos bt$	$\frac{s-a}{(s-a)^2+b^2}$
11.	$t^n e^{at}$, $n = \text{positive integer}$	$\frac{n!}{(s-a)^{n+1}}$
12.	$u_c(t)$	$\frac{e^{-cs}}{s}$
13.	$u_c(t)f(t-c)$	$e^{-cs}F(s)$
14.	$e^{ct}f(t)$	F(s-c)
15.	f(ct)	$\frac{1}{c}F\left(\frac{s}{c}\right)$
16.	$(f*g)(t) = \int_0^t f(t-\tau)g(\tau) d\tau$	F(s)G(s)
17.	$\delta(t-c)$	e^{-cs}
18.	$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \dots - f^{(n-1)}(0)$
19.	$(-t)^n f(t)$	$F^{(n)}(s)$