Student's Name:		
Student's ID Number: _		
MA 231 Sections:		
0011 8:30 Greg Hurst	0021 9:30 Greg Hurst	
0031 10:30 Lidia Mrad	0041 11:30 Lidia Mrad	
Instructions:		

1. Do NOT turn the page until told to do so.

- 2. Fill in your name and student ID in the space provided above.
- 3. On the scantron, fill in your name, section number, student ID. Leave the test/quiz number blank. Sign your name.
- 4. There are 12 problems and a total of 7 pages (including this cover page). The maximum possible score for this exam is 100, and each problem is worth the same points.
- 5. You can use the available space at the back of each page or below a question for your work. Turn in ONLY the scantron when you leave. Note: you will be graded ONLY based on your scantron answer sheet.
- 6. A one-line display scientific calculator is allowed. A two-line display scientific calculator with NO capacities in computing derivatives and integrals is also allowed. NO other electronic devices are allowed. No books or notes are allowed.
- 7. You will have 60 minutes to complete the exam.
- 8. Keep your eyes on your own exam please. Try to cover your bubbled in scantron answers.
- 9. Good luck!

- 1. Solve $3x^2 4x = 1$.
 - A. $x = \frac{1}{3}, x = 1$ B. $x = \frac{4}{3}, x = -1$ C. $x = \frac{2 \pm \sqrt{7}}{3}$ D. $x = \frac{2 \pm \sqrt{14}}{6}$ E. $x = \frac{1 \pm 2\sqrt{14}}{3}$

- 2. Find the domain of $f(x) = \frac{x^2 + 5x + 6}{x^2 + 4x + 3}$.
 - A. $\{x \mid x \text{ is a real number and } x \neq -3 \text{ and } x \neq -2\}$
 - B. $\{x \mid x \text{ is a real number and } x \neq -1\}$
 - C. $\{x \mid x \text{ is a real number and } x \neq -2\}$
 - D. $\{x \mid x \text{ is a real number and } x \neq -3 \text{ and } x \neq -1\}$
 - E. $\{x \mid x \text{ is a real number and } 0 < x < 3\}$

- 3. $\cot^2 x \cos^2 x$ simplifies to
 - A. $\cos^2 x \sin^2 x$
 - B. $\cot^2 x \cos^2 x$
 - C. 1
 - D. $\sin^2 x$
 - E. $\sin^4 x$

- 4. Give a periodic function of the form $f(x) = a \sin(bx) + k$, where f(x) has a average value of 9, minimum value of 3, and a period of 8.
 - A. $f(x) = 6\sin(8x) + 9$
 - B. $f(x) = 9\sin(8x) + 6$
 - C. $f(x) = 3\sin(8x) + 9$
 - D. $f(x) = 9\sin(\frac{\pi x}{4}) + 6$
 - E. $f(x) = 6\sin\left(\frac{\pi x}{4}\right) + 9$

MA 23100 - Exam 1 (Green)

5. If the temperature remains constant, the pressure of an enclosed gas is inversely proportional to the volume. The pressure of helium within a spherical balloon of radius 9 inches is 20 lb/in².

The volume of a sphere with radius r is given by $V = \frac{4}{3}\pi r^3$. If the radius of the balloon increases to 12 inches what is the pressure of the gas?

A. 26.67 lb/in^2

B. 8.438 lb/in^2

C. 0.119 lb/in^2

D. 21.917 lb/in^2

E. 15 lb/in^2

6. Given that the solutions to $2x^2 + x - 1 = 0$ are $x = \frac{1}{2}$ and x = -1, solve

$$2\sin^2(3x) + \sin(3x) - 1 = 0.$$

A. $x = \frac{\pi}{18} + \frac{2\pi n}{3}, x = \frac{5\pi}{18} + \frac{2\pi n}{3}, x = \frac{\pi}{2} + \frac{2\pi n}{3}$ B. $x = \frac{\pi}{6} + \frac{2\pi n}{3}, x = \frac{5\pi}{6} + \frac{2\pi n}{3}, x = \frac{\pi}{2} + \frac{2\pi n}{3}$ C. $x = \frac{\pi}{6} + 2\pi n, x = \frac{5\pi}{6} + 2\pi n, x = \frac{3\pi}{2} + 2\pi n$ D. $x = \frac{\pi}{18} + 2\pi n, x = \frac{5\pi}{18} + 2\pi n, x = \frac{\pi}{2} + 2\pi n$ E. $x = \frac{\pi}{9} + 2\pi n, x = \frac{2\pi}{9} + 2\pi n, x = \frac{3\pi}{2} + 2\pi n$

MA 23100 - Exam 1 (Green)

Consider the plot of f(x) below for the next two problems.

- 7. Find the number of correct statements.
 - I. There are four discontinuities shown above.
 - II. It is possible to define f(3) so that f(x) is continuous at x = 3.
 - III. f(x) is discontinuous on the interval (4,7).
 - IV. It is possible to define f(2) so that f(x) is continuous at x = 2.
 - A. There are zero correct statements
 - B. There is only one correct statement
 - C. There are only two correct statements
 - D. There are only three correct statements
 - E. All statements are correct

8. In the plot above, if $a = \lim_{x \to -2} f(x)$ and $b = \lim_{x \to 3^-} f(x)$, find ab.

- A. 8
- B. 4
- C. 20
- D. 10
- E. 15

9. Evaluate
$$\lim_{x \to 4} \frac{(x-4)^3}{(x^2+3x-28)^3}$$
.
A. $\frac{1}{1330}$
B. $\frac{1}{1331}$
C. $\frac{1}{1332}$
D. $\frac{1}{1333}$

E. $\frac{1}{1334}$

10. Find the simplified difference quotient of $f(x) = 3x^2 - 5x + 7$.

A.
$$3h^2 + 6hx - 5h - 10x + 14$$

B. $3h - 5$
C. $6x - 5 + 3h$
D. $6x - 5 + 3h^2$
E. $3h + 5$

11. Given the derivative of $f(x) = x^2 - \frac{1}{x}$ is $f'(x) = 2x + \frac{1}{x^2}$, find the equation of the tangent line to $f(x) = x^2 - \frac{1}{x}$ at the point x = 1.

A. y = 3x - 3B. y = 3x + 1C. y = x - 1D. y = 2x - 4E. y = 2x - 2

12. If
$$f(x) = (x - x^2)^2 - 3\sin x$$
, find $f'(\pi)$.
A. $4\pi^3 - 4\pi^2 - 3$
B. $-2\pi^2 + 2\pi - 3$
C. $-2\pi^2 + 2\pi + 3$
D. $4\pi^3 - 6\pi^2 + 2\pi - 3$
E. $4\pi^3 - 6\pi^2 + 2\pi + 3$