1. Simplify $\frac{\frac{15}{5}}{1-\frac{1}{2}}$
A. $\frac{2}{3}$
B. 2
C. $\frac{3}{2}$
D. 6
E. None of the above
2. Factor $16 x^{2}-4 y^{8}$ completely.
A. $\left(4 x-y^{2}\right)\left(4 x+y^{2}\right)$
B. $\left(4 x-2 y^{4}\right)^{2}$
C. $4\left(2 x-y^{4}\right)\left(2 x+y^{4}\right)$
D. $4\left(2 x-y^{2}\right)$
E. None of the above
3. Simplify $\left(\frac{4 a^{4} b^{8}}{c^{-2}}\right)^{-\frac{1}{2}}$
A. $\frac{1}{2 a^{2} b^{4} c}$
B. $\frac{2 a^{2} b^{4}}{c}$
C. $\frac{a^{4} b^{3}}{16 c^{2}}$
D. $\frac{c}{2 a^{2} b^{4}}$
E. None of the above
4. Subtract and simplify.

$$
\frac{3 x}{3 x+1}-\frac{x}{x-2}
$$

A. $\frac{2 x^{2}-1}{(3 x+1)(x-2)}$
B. $\frac{-3 x^{2}}{(3 x+1)(x-2)}$
C. $\frac{-7 x}{(3 x+1)(x-2)}$
D. $\frac{2 x}{(3 x+1)(x-2)}$
E. None of the above
5. Simplify; do not include negative exponents in your final answer.

$$
\frac{1-\frac{a}{b}}{1-\frac{a^{2}}{b^{2}}}
$$

A. $\frac{1}{1+a}$
B. $\frac{b}{b-a}$
C. $\frac{1}{a}$
D. $\frac{b}{a+b}$
E. a
6. If $f(x)=\frac{3 x}{5-x}$, find the inverse function of f.
A. $f^{-1}(x)=\frac{5-x}{3 x}$
B. $f^{-1}(x)=\frac{3 x}{x+5}$
C. $f^{-1}(x)=5+\frac{x}{3}$
D. $f^{-1}(x)=\frac{5 x}{x+3}$
E. None of the above
7. Express $f(x)=-2 x^{2}+12 x-14$ in the form $y=a(x-h)^{2}+k$.
A. $y=-2(x+3)^{2}+4$
B. $y=-2(x+3)^{2}+32$
C. $y=-2(x-3)^{2}+32$
D. $y=-2(x-3)^{2}+4$
E. $y=-2(x-6)^{2}-14$
8. Which of the following statements is/are true about the function $f(x)=2^{-x}$?
I. The domain of $f(x)$ is $(-\infty, \infty)$
II. The range of $f(x)$ is $(-\infty, \infty)$
III. $\quad f(x) \neq 0$
A. I only
B. II only
C. I and III only
D. II and III only
E. I, II, and III
9. Divide and simplify.

$$
\frac{x^{2}-2 x}{2 x^{2}+5 x-3} \div \frac{x^{2}-5 x+6}{x^{2}-9}
$$

A. $\frac{x(x+2)(x-6)}{2 x-3(x-3)^{2}}$
B. $\frac{x}{2 x-1}$
C. $\frac{x(x+2)(x-6)}{2 x-3}$
D. $\frac{x(x-2)^{2}}{(2 x-1)(x+3)^{2}}$
E. None of the above
10. A job takes 4 hours for two people working together. If one person works alone he can do the job in 6 hours. How long will it take the other person working alone to complete the job?
A. $4 h r s$.
B. 6 hrs .
C. 8 hrs .
D. 10 hrs .
E. None of the above
11. Simplify; do not include negative exponents in your final answer.

$$
\frac{x y^{-1}}{(x+y)^{-1}}
$$

A. $\frac{x(x+y)}{y}$
B. $\frac{x^{2}}{x+y}$
C. $\frac{x+y}{x y}$
D. $\frac{x y}{x+y}$
E. None of the above
12. Simplify by rationalizing the denominator.

$$
\frac{\sqrt{3}}{2+\sqrt{3}}
$$

A. $\frac{1}{2}$
B. 2
C. $2 \sqrt{3}-3$
D. $\sqrt{3}+2$
E. $\frac{2 \sqrt{3}-3}{7}$
13. Let x and y be two consecutive positive integers such that x is less than y and the difference of their squares is 145 . Find x.
A. 73
B. 72
C. 12
D. 8
E. None of the above
14. If $A=P(1+r t)$, then $t=$
A. $\frac{A-P}{r}$
B. $A-P$
C. $\frac{A-P}{P}$
D. $\frac{A}{P}$
E. None of the above
15. A truck enters a freeway traveling 40 mph . One hour later a car enters the same freeway traveling 55 mph . After how many miles will the car overtake the truck?
A. $146 \frac{2}{3}$ miles
B. $201 \frac{2}{3}$ miles
C. 120 miles
D. $106 \frac{2}{3}$ miles
E. None of the above
16. A square of side x is inscribed in a circle. Express the area A of the circle as a function of x.
A. $A=\frac{\pi}{2} x^{2}$
B. $A=x^{2}$
C. $A=\pi x^{2}$
D. $A=\frac{\pi}{4} x^{2}$
E. None of the above
17. Solve for p :

$$
\frac{4}{2 p-3}+\frac{10}{4 p^{2}-9}=\frac{1}{2 p+3}
$$

A. $p=-\frac{3}{2}$
B. $p=\frac{5}{6}$
C. There is no solution
D. $p=-\frac{25}{6}$
E. None of the above
18. How many ml of a 50% acid solution should be added to 40 ml of a 20% acid solution to obtain a solution that is 25% acid?
A. 10 ml
B. 8 ml
C. 6 ml
D. 4 ml
E. None of the above
19. Solve for x and list all the real solutions:

$$
x=\sqrt{14+5 x}
$$

A. $x=3, x=14$
B. $x=-2, x=7$
C. $x=-2$
D. $x=\frac{14}{3}$
E. None of the above
20. Solve for m and list all solutions (real and/or imaginary):

$$
m^{4}-m^{2}-6=0
$$

A. $m=2,3$
B. $m=-2, \pm \sqrt{3}$
C. $m= \pm \sqrt{3}, \pm 2 i$
D. $m= \pm \sqrt{3}, \pm \sqrt{2} i$
E. None of the above
21. Suppose y is directly proportional to the cube root of x and inversely proportional to the square of z. Find the constant of proportionality if $y=6$ when $x=8$ and $z=4$.
A. 24
B. $\frac{3}{16}$
C. 6
D. $\frac{3}{128}$
E. 48
22. Solve $x^{2}+5 x+6 \leq 0$ and express the solutions in interval notation.
A. $[-3,-2]$
B. $[-3,2]$
C. $[2,3]$
D. $[-6,1]$
E. $[-1,6]$
23. If $f(x)=2 x^{2}-5 x+3$ and $g(x)=-x+6$, find $(g \circ f)(x)=0$.
A. $x=-\frac{1}{2} ; x=3$
B. $x=-\frac{3}{2} ; x=1$
C. $x=\frac{1}{2} ; x=1$
D. $x=-\frac{5}{4}-\frac{\sqrt{97}}{4} ; x=-\frac{5}{4}+\frac{\sqrt{97}}{4}$
E. $x=-1 ; x=\frac{3}{2}$
24. Solve the system.

$$
\left\{\begin{array}{c}
x-3 y=4 \\
-2 x+6 y=2
\end{array}\right.
$$

A. $\left(\frac{1}{2}, \frac{1}{2}\right)$
B. $\left(\frac{13}{2}, \frac{5}{6}\right)$
C. $\left(\frac{11}{2}, \frac{1}{2}\right)$
D. Infinitely many solutions
E. No solution
25. Solve the inequality and express the solution in terms of intervals

$$
3 x-2>6 x+1
$$

A. $(-\infty,-1)$
B. $(-1,1)$
C. $(\infty,-1]$
D. $(-1, \infty)$
E. None of the above
26. Solve the inequality:

$$
|6-2 x| \leq 3
$$

A. $\left[\frac{3}{2}, \infty\right)$
B. $\left(-\infty, \frac{3}{2}\right]$
C. $\left[\frac{3}{2}, \frac{9}{2}\right]$
D. $\left[-\frac{9}{2},-\frac{3}{2}\right]$
E. None of the above
27. Find all values of k so that the solutions of the following equation are real numbers:

$$
2 x^{2}-4 x+k=0
$$

A. $k=2$
B. $k>2$
C. $k \geq 2$
D. $k \leq 2$
E. None of the above
28. The base of a triangle is three inches more than its height. If each is increased by 3 inches the area is 14 square inches. Find the original base (b) and the original height (h) in inches.
A. $b=4, h=1$
B. $b=9, h=6$
C. $b=8, h=5$
D. $b=\frac{7}{2}, h=\frac{1}{2}$
E. None of the above
29. Solve the given system of equations, then determine which of the following is NOT true regarding the solutions?

$$
\begin{gathered}
2 x^{2}+y^{2}=1 \\
x-y=1
\end{gathered}
$$

A. There are no solutions in QI
B. There are no solutions in QII
C. There are no solutions in QIII
D. There are no solutions in QIV
E. There are no solutions that lie on the x-axis
30. If $(2,3)$ is the midpoint of segment $A B$, and point A has coordinates $(1,-2)$, find the coordinates of the point B.
A. $(1,5)$
B. $(3,1)$
C. $(3,8)$
D. $\left(\frac{3}{2}, \frac{1}{2}\right)$
E. None of the above
31. The slope of a line perpendicular to the line drawn is:

A. $\frac{1}{3}$
B. $-\frac{1}{3}$
C. -3
D. 3
E. None of the above
32. M varies jointly with x cubed and y, and inversely with the square root of z. Find the constant of proportionality k if $M=64$ when $x=8, y=5$, and $z=4$.
A. $k=\frac{64}{5}$
B. $k=\frac{1}{20}$
C. $k=\frac{5}{4}$
D. $k=\frac{2}{5}$
E. None of the above
33. Give the equation of the line in slope-intercept form which is parallel to the line $2 x-3 y=7$ and contains the point $(4,-1)$.
A. $y=\frac{3}{2} x-7$
B. $y=-\frac{2}{3} x+\frac{5}{2}$
C. $y=\frac{2}{3} x-\frac{11}{3}$
D. $y=\frac{2}{3} x+\frac{14}{3}$
E. None of the above
34. The equation for the circle show is:

A. $x^{2}+y^{2}=4$
B. $x^{2}+y^{2}-4 y=0$
C. $x^{2}(y-2)=4$
D. $x^{2}+y^{2}+4 y=0$
E. $x^{2}+y^{2}+4 x+4 y-8=0$
35. Given that $f(x)=x^{2}-x-2$ and $g(x)=2 x-1$, determine which of the following is/are true.
I. $\quad(g \circ f)(0)=-5$
II. $\quad(f \circ g)(x)=0$, when $x=0, \frac{2}{3}$
III. $\quad g^{-1}(x)=\frac{x+1}{2}$
A. I only
B. I and II only
C. I and III only
D. II and III only
E. I, II, and III
36. If $f(x)=\frac{x}{x^{2}+1}$, find $f\left(\frac{1}{3}\right)$ and $\frac{1}{f(3)}$.
A. $f\left(\frac{1}{3}\right)=\frac{3}{10}, \frac{1}{f(3)}=\frac{3}{10}$
B. $f\left(\frac{1}{3}\right)=\frac{10}{27}, \frac{1}{f(3)}=\frac{3}{10}$
C. $f\left(\frac{1}{3}\right)=\frac{10}{27}, \frac{1}{f(3)}=\frac{10}{13}$
D. $f\left(\frac{1}{3}\right)=\frac{3}{10}, \frac{1}{f(3)}=\frac{10}{3}$
E. None of the above
37. Find the domain of f.

$$
\begin{array}{ll}
f(x)=\sqrt{3 x-2}+1 & \\
& \text { A. }(-\infty, \infty) \\
& \text { B. }\left[\frac{3}{2}, \infty\right) \\
& \text { C. }\left[\frac{2}{3}, \infty\right) \\
& \text { D. }\left(-\infty, \frac{2}{3}\right] \\
\text { E. }[0, \infty)
\end{array}
$$

38. Which of the following statements about the graph of f is/are true?

I. Increasing intervals: $(-\infty,-2] \cup[0,1)$
II. Range: $(-\infty, 3]$
III. y-intecept: $(0,2)$
A. I only
B. I and II only
C. I and III only
D. I, II, and III
E. None are true
39. Find the vertex of the parabola and determine whether it is a minimum or maximum.

$$
f(x)=3(x+2)(x-10)
$$

A. $(4,-108)$; minimum
B. $(-4,-84)$; maximum
C. $\left(\frac{4}{3},-\frac{260}{3}\right)$; minimum
D. $(4,-108)$; maximum
E. $(-4,-84)$; minimum
40. If $x<0$ and $y>0$, which of the following inequalities is/are true?

$$
\begin{array}{ll}
\text { I. } x^{2} y>0 \\
\text { II. } \frac{y-x}{x y}<0 & \begin{array}{l}
\text { A. I and II only } \\
\text { III. } y(x-y)<0 \\
\\
\end{array} \\
\begin{array}{l}
\text { B. I and III only } \\
\text { C. II and III only } \\
\\
\end{array} & \begin{array}{l}
\text { D. I, II, and III } \\
\text { E. None of the above }
\end{array}
\end{array}
$$

41. If $f(x)=x^{2}$, which of the following graphs represents $-f(x+1)-2$
A.

D.

C.

E.

42. Given below is the graph of which of the following functions?

A. $f(x)=\left(\frac{1}{2}\right)^{x}$
B. $g(x)=2^{x}$
C. $h(x)=-2^{x}$
D. $j(x)=-\left(\frac{1}{2}\right)^{x}$
E. $k(x)=1-2^{x}$
43. Express as one $\operatorname{logarithm:~} \log \left(\frac{x^{2}}{y^{3}}\right)-\log (x y)-4 \log \sqrt{y}$
A. $\log \left(\frac{x}{y^{2}}\right)$
B. $\log \left(\frac{x}{y^{6}}\right)$
C. $\log x^{3}$
D. $\log \left(\frac{x}{y^{8}}\right)$
E. $-4 \log \left(\frac{x^{2}}{y^{3}}-x y-\sqrt{y}\right)$
44. Which of the following statements is/are true of the function $f(x)=\log _{2} x$?
I. f is an increasing function
II. f has a zero at $x=1$
III. f has a y-intercept at $(0,1)$
IV. The domain of f is $(-\infty, \infty)$
A. I and II only
B. I and III only
C. I and IV only
D. II and III only
E. II and IV only
45. Which of the following is equivalent to $\log \left(\frac{z^{3}}{x \sqrt{y}}\right)$?
A. $3 \log z-\log x-\frac{1}{2} \log y$
B. $\frac{3}{2} \log (z-x y)$
C. $3 \log z-\log x-2 \log y$
D. $\frac{3}{2} \log (z-x+y)$
E. $3 \log z-\log x+\frac{1}{2} \log y$
46. Solve for $x: 3^{x-5}=4$.
A. $x=\log 4+5 \log 3$
B. $x=5+\log \left(\frac{4}{3}\right)$
C. $x=5+\frac{\log 4}{\log 3}$
D. $x=5+\log 4$
E. $x=\frac{5+\log 4}{\log 3}$
47. Solve for $x: \log _{3} \sqrt{2 x+3}=2$
A. $x=\frac{5}{2}$
B. $x=\frac{3}{2}$
C. $x=39$
D. $x=17$
E. $x=3$
48. Given that $\log _{3} m=8, \log _{3} n=10$, and $\log _{3} p=6$, calculate $\log _{3}\left(\frac{\sqrt{m n}}{p^{3}}\right)$
A. -9
B. $\frac{2 \sqrt{5}}{27}$
C. 22
D. -56
E. -4
49. Which of the following is the graph of the function $f(x)=x^{2}(x-1)(x+1)^{2}$?

C.

50. Which of the following statements is/are true regarding the graph of $f(x)=2+2^{x}$?
I. $\quad f(x)=0$, when $x=-1$
II. $f(0)=2$
A. I only
III. The domain of f is $(2, \infty)$
B. II only
C. III only
D. IV only
E. I, II, and IV only
51. Which of the following systems has no solution?
A. $\left\{\begin{array}{l}2 x+3 y=8 \\ 3 x-2 y=4\end{array}\right.$
B. $\left\{\begin{array}{c}3 x+4 y=5 \\ 6 x+4 y=10\end{array}\right.$
C. $\left\{\begin{array}{c}2 x-3 y=4 \\ -4 x+6 y=3\end{array}\right.$
D. $\left\{\begin{array}{l}x-4 y=6 \\ 2 x-4 y=6\end{array}\right.$
E. $\left\{\begin{array}{l}3 x-2 y=4 \\ 6 x+4 y=8\end{array}\right.$
52. Solve the system of equations $\left\{\begin{array}{c}x^{2}+y^{2}=25 \\ y=x^{2}-5\end{array}\right.$ and determine which of the following statements is/are true regarding the solution(s).
I. One solution is an x-intercept.
II. There are three solutions.
III. All solutions are above the x-axis.
A. I only
B. II only
C. I and III only
D. II and III only
E. I, II, and III
53. The value of a rare book is increasing linearly. It was worth $\$ 54$ in 1981 and $\$ 62$ in 1983. What is the formula for the value (v) of the book t years after 1980 ?
A. $v=50+4 t$
B. $v=48+3 t$
C. $v=50+3 t$
D. $v=51+4 t$
E. None of the above
54. If $f(x)=-x^{2}+x+2$, find $\frac{f(x+h)-f(x)}{h}$.
A. $-2 x-h$
B. $-h^{2}$
C. $-2 x-h^{2}+h$
D. $-h+1$
E. $-2 x-h+1$
55. An aquarium in the shape of a rectangular box is to have a height of 1.5 feet and a volume of 6 cubic feet. Let x denote the length of the base and y the width of the base. Express y as a function of x.
A. $y=1.5 x$
B. $y=\frac{4}{x}$
C. $y=x^{2}$
D. $y=\frac{6}{x}$
E. $y=9 x$
56. If $\log _{x} 2=5$, solve for x. Write your answer correct to four decimal places.
A. 2.2361
B. 1.4142
C. 0.6990
D. 1.1487
E. 0.3010
57. Solve the inequality:

$$
2|-11-7 x|-2 \geq 10
$$

A. $\left[-\frac{17}{7},-\frac{5}{7}\right]$
B. $\left(-\infty,-\frac{17}{7}\right] \cup\left[-\frac{5}{7}, \infty\right)$
C. $\left[\frac{5}{7}, \frac{17}{7}\right]$
D. $(-3,5) ;(-1,-3)$
E. $(5,21) ;(-1,-5)$
58. Solve $x^{2}+5 x-6>0$ and express the solutions in interval notation.
A. $(-\infty, 2] \cup[3, \infty)$
B. $[2,3]$
C. $(-\infty,-6] \cup[1, \infty)$
D. $(-6,1)$
E. $(-\infty,-6) \cup(1, \infty)$
59. Solve for x and choose the answer that best describes the solution(s).

$$
x=4+\sqrt{4 x-19}
$$

A. There is one solution. It is negative.
B. There are two solutions. Both are positive.
C. There is one solution. It is positive.
D. There are two solutions. One is positive and one is negative.
E. There is no solution for x.
60. Which of the following equations is/are true?
I. $\quad \ln 0=1$
II. $\quad 10^{\log 8}=8$
III. $\quad \log _{4} 8=2$
A. I only
B. II only
C. III only
D. I, II, and III
E. None of the equations are true
61. Which of the following is a factor of $6 x^{2}-5 x+1$?
A. $x+1$
B. $x-1$
C. $2 x+1$
D. $2 x-1$
E. $6 x-1$
62. Which of the following is the graph of $f(x)=-x^{2}-2 x-3$
A.

D.

B.

E.

63. Which of the following equations is/are true?
I. $\quad \log _{5} 1=\frac{1}{5}$
II. $\quad \log _{11} 11^{2}=2$
III. $\quad \ln e=1$
A. I and II only
B. II and III only
C. I and III only
D. I, II, and III
E. None of the equations are true
64. If $f(x)=\sqrt{2-3 x}$ and $g(x)=\frac{1}{x^{2}}$, find $(g \circ f)(0)$.
A. $(g \circ f)(0)=0$
B. $(g \circ f)(0)=\sqrt{2}$
C. $(g \circ f)(0)=\frac{1}{2}$
D. $(g \circ f)(0)=\frac{1}{4}$
E. $(g \circ f)(0)$ is undefined
65. Which of the following statements is/are true about the function $f(x)=\log _{2} x$?
I. The graph of the f is always increasing
II. The range of $f(x)$ is $(-\infty, \infty)$
III. The graph of the f crosses the y-axis at $(0,1)$
A. I only
B. II only
C. I and II only
D. I and III only
E. II and III only
66. Solve $81 x^{2} \geq 16 x$ and express the solutions in interval notation.
A. $(-\infty, 0] \cup\left[\frac{16}{81}, \infty\right)$
B. $\left[-\frac{4}{9}, \frac{4}{9}\right]$
C. $(-\infty, \infty)$
D. $\left[\frac{16}{81}, \infty\right)$
E. $\left(-\infty,-\frac{4}{9}\right] \cup\left[\frac{4}{9}, \infty\right)$
67. Find the function whose graph is given below.

A. $f(x)=\frac{1}{2} x^{2}+2 x-2$
B. $f(x)=-x^{2}+4 x-2$
C. $f(x)=x^{2}-4 x-2$
D. $f(x)-\frac{1}{2} x^{2}-2 x+2$
E. $f(x)=\frac{1}{2} x^{2}-2 x-2$
68. Solve $\frac{x^{2}(3-x)}{x+2}>0$ and express the solutions in interval notation.
A. $(-2,3]$
B. $(-2,0] \cup[0,3)$
C. $(-\infty,-2) \cup(3, \infty)$
D. $(-2,3)$
E. $(-2,0) \cup(0,3)$
69. Solve $\frac{(4-x)^{2}}{x^{2}} \geq 0$ and express the solutions in interval notation.
A. $(-\infty, \infty)$
B. $(-\infty, 4) \cup(4, \infty)$
C. $(-\infty, 0) \cup(0, \infty)$
D. $(-\infty, 0] \cup[4, \infty)$
E. $(0, \infty)$
70. If $f(x)=8 x-1$ and $g(x)=\sqrt{x-2}$ find $(f \circ g)(2)$.
A. $(f \circ g)(2)=2$
B. $(f \circ g)(2)=0$
C. $(f \circ g)(2)=-1$
D. $(f \circ g)(2)=7$
E. $(f \circ g)(2)$ is undefined
71. Solve the system. Indicate the number of times the graphs intersect.

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=25 \\
3 x+4 y=25
\end{array}\right.
$$

A. 0
B. 1
C. 2
D. 3
E. 4
72. Eight hundred feet of chain-link fence is to be used to construct six animal cages, as shown in the figure. Find the dimensions that maximize the enclosed area.

A. $x=\frac{3}{800} ; y=\frac{639,991}{3200}$
B. $x=200 ; y=200$
C. $x=\frac{400}{3} ; y=100$
D. $x=100 ; y=125$
E. $x=\frac{800}{3} ; y=200$
73. A certain city charges $\$ 0.00361$ per gallon of water used, up to 5,000 gallons, and $\$ 0.00417$ per gallon of water used for more than 5,000 gallons. Find a piecewise-defined function B that specifies the total bill for water usage of x gallons.

$$
\begin{aligned}
& \text { A. } B(x)=\left\{\begin{array}{l}
0.00361, \text { if } x \leq 5,000 \\
0.00417, \text { if } x>5,000
\end{array}\right. \\
& \text { B. } B(x)=\left\{\begin{array}{l}
0.00361 x, \text { if } x \leq 5,000 \\
0.00417 x, \text { if } x>5,000
\end{array}\right. \\
& \text { C. } B(x)= \begin{cases}0.00361 x, & \text { if } x \leq 5,000 \\
0.00778 x, & \text { if } x>5,000\end{cases} \\
& \text { D. } B(x)= \begin{cases}0.00361 x, & \text { if } x \leq 5,000 \\
0.00417 x-2.8, & \text { if } x>5,000\end{cases} \\
& \text { E. } B(x)= \begin{cases}0.00361 x, & \text { if } x \leq 5,000 \\
0.00417 x+18.05, & \text { if } x>5,000\end{cases}
\end{aligned}
$$

74. A woman rows a boat 1.75 miles upstream against a constant current in 35 minutes. She then rows the same distance downstream (with the same current) in 15 minutes. What is the rate of the current?
A. 2 mph
B. 5 mph
C. $\frac{1}{30} \mathrm{mph}$
D. 1 mph
E. $\frac{17}{60} \mathrm{mph}$
75. To fill an order for 150 office desks, a furniture distributor must ship the desks from two warehouses. The shipping cost per desk is $\$ 48$ from the western warehouse and $\$ 70$ from the eastern warehouse. If the total shipping charge is $\$ 8,410$, how many desks were shipped from the eastern warehouse?
A. 55
B. 80
C. 70
D. 95
E. 100
76. If $x=0$, which of the following functions is/are undefined?

$$
\begin{gathered}
f(x)=\frac{1}{x} \\
g(x)=\sqrt{x} \\
h(x)=\log x \\
k(x)=\frac{x}{2}
\end{gathered}
$$

A. f and g only
B. f and h only
C. g and h only
D. g and k only
E. h and k only
77. Solve $10 x^{2}+11 x>6$ and express the solution in interval notation.
A. $\left[-\frac{3}{2}, \frac{2}{5}\right]$
B. $\left(-\infty,-\frac{3}{2}\right) \cup\left(\frac{2}{5}, \infty\right)$
C. $(-\infty, \infty)$
D. $\left(-\frac{3}{2}, \frac{2}{5}\right)$
E. $\left(-\infty,-\frac{3}{2}\right] \cup\left[\frac{2}{5}, \infty\right)$
78. Solve $P+N=\frac{C+2}{C}$ for C.
A. $C=\frac{2}{P+N}$
B. $C=\frac{P N}{2}$
C. $C=\frac{2}{P N-1}$
D. $C=\frac{P+N}{2}$
E. $C=\frac{2}{P+N-1}$
79. Express the number in the form $\frac{a}{b}$, where a and b are integers:

$$
-2^{2}+\left(\frac{1}{2}\right)^{0}+16^{-\frac{3}{4}}
$$

A. -11
B. $-\frac{31}{8}$
C. $\frac{33}{8}$
D. $\frac{41}{8}$
E. $-\frac{23}{8}$
80. Simplify; do not include negative exponents in your final answer.

$$
\begin{array}{ll}
\frac{x+x^{-2}}{1+x^{-2}} & \text { A. } x \\
& \text { B. } x+1 \\
& \text { C. } \frac{x(x+1)}{x^{2}+1} \\
\text { D. } \frac{x^{3}+1}{x^{2}+1} \\
& \text { E. } \frac{x}{x+1}
\end{array}
$$

$A \mathcal{N} N \mathrm{~N}$			
1. D	2. C	3. A	4. C
5. D	6. D	7. D	8. C
9. B	10. E	11. A	12. C
13. B	14. E	15. A	16. A
17. D	18. B	19. E	20. D
21. E	22. A	23. A	24. E
25. A	26. C	27. D	28. A
29. D	30. C	31. D	32. B
33. C	34. B	35. C	36. D
37. C	38. B	39. A	40. D
41. A	42. A	43. B	44. A
45. A	46. C	47. C	48. A
49. A	50. D	51. C	52. B
53. A	54. E	55. B	56. D
57. B	58. E	59. B	60. B
61. D	62. A	63. B	64. C
65. C	66. A	67. E	68. E
69. C	70. C	71. B	72. C
73. D	74. A	75. A	76. B
77. B	78. E	79. E	80. D

