MA 22000 Review Problems for Exam 3

For problems 1, 2, and 3: Find equation of any vertical or horizontal asymptotes. If there are none, write 'none'.

1) $y=\frac{-2 x}{x^{2}-5 x+6}$
2) $f(x)=\frac{3 x^{2}-3 x-6}{2 x^{2}-6 x-20}$
3) $g(x)=\frac{2 x^{3}+3 x}{5 x-1}$

Solve each exponential equation.
4) $\quad 3^{x+1}=\frac{1}{27}$
5) $4^{2 x+1}=8^{x-3}$
6) $\quad 27^{x}=9^{x^{2}+x}$

Compound interest formulas: $\quad A=P\left(1+\frac{r}{m}\right)^{m t} \quad A=P e^{r t}$
7) Find the accumulated amount if $\$ 5000$ is invested at 6% annual interest compounded quarterly for 6 years.
8) How long would it take (to the nearest tenth of a year) for $\$ 1000$ to accumulate to $\$ 1250$ at 4% annual interest rate compounded continuously?
9) Write $4^{0.5}=2$ in logarithmic form.
10) Use your calculator to approximate $\ln 35.6$ and $e^{2.3}$.
11) Use your calculator and the change of base formula to approximate $\log _{3} 17$ to 4 decimal places.

Solve each equation. Round to 4 decimal places, if necessary.
12) $\quad \log _{6}(x+1)=2$
13) $\log (x+5)+\log (x+2)=1$
14) $\quad 3^{x+2}=7^{x}$
15) Suppose $\log _{b} 2=x$ and $\log _{b} 5=y$. Use the properties of logarithms to find $\log _{b} 20$.
16) Evaluate $\log _{4} 64$ and $\log _{3} \frac{1}{9}$ without a calculator. logarithms. Simplify where possible.

$$
\log _{4}\left(\frac{16 p}{\sqrt{q}}\right)
$$

18) Find each limit, if it exists.
(a) $\lim _{x \rightarrow \infty} \frac{3 x^{2}-5}{2 x-5 x^{2}}$
(b) $\lim _{x \rightarrow-\infty} \frac{5 x-3}{2 x^{2}+7 x-1}$

Find each derivative.
19) $y=-14 e^{2 x}$
20) $\quad f(x)=-2 x^{2} e^{-3 x}$
21)
$y=\frac{\ln (2 x+6)}{x+3}, x>-3$
22) $y=\left(x^{3}+e^{2 x}\right)^{3}$
23) $f(x)=\frac{e^{x}\left(x^{2}+2\right)}{\ln x}$
24) Find the slope of the tangent line and the equation of the tangent line to the curve $y=x e^{x}$ at the point where $x=1$.
25) Find any open intervals where these functions are increasing.
(a) $f(x)=4 x^{3}+8 x^{2}-16 x+11$
(b) $\quad g(x)=\frac{15}{2 x+7}$

Find the locations and values of all relative maxima and minima.
$f(x)=2 x^{3}+3 x^{2}-12 x+5$
27) $\quad g(x)=\frac{\ln x}{2 x^{2}}, x>0$

Find the second derivative of each function.
28) $f(x)=9 x^{3}+\frac{2}{x}$
29) $g(x)=\frac{1-2 x}{4 x+3}$
30) Find $f^{\prime \prime}(2)$ and $f^{\prime \prime}(5)$ if $f(x)=2 x^{2}-5 x^{3}+\frac{1}{x^{2}}$

Sketch a graph of each function using algebra and calculus information.
31)

$$
f(x)=4 x+\frac{1}{x}
$$

32) $y=\frac{4 x^{2}}{x^{2}+4}$
