For problems 1, 2, and 3: Find equation of any vertical or horizontal asymptotes. If there are none, write 'none'.

1)
$$y = \frac{-2x}{x^2 - 5x + 6}$$
 2) $f(x) = \frac{3x^2 - 3x - 6}{2x^2 - 6x - 20}$

3)
$$g(x) = \frac{2x^3 + 3x}{5x - 1}$$

Solve each exponential equation.

4)
$$3^{x+1} = \frac{1}{27}$$
 5) $4^{2x+1} = 8^{x-3}$

6)
$$27^x = 9^{x^2 + x}$$

Compound interest formulas: $A = P\left(1 + \frac{r}{m}\right)^{mt}$ $A = Pe^{rt}$

7) Find the accumulated amount if \$5000 is invested at 6% annual interest compounded quarterly for 6 years.

8) How long would it take (to the nearest tenth of a year) for \$1000 to accumulate to \$1250 at 4% annual interest rate compounded continuously?

9) Write $4^{0.5} = 2$ in logarithmic form.

10) Use your calculator to approximate $\ln 35.6$ and $e^{2.3}$.

11) Use your calculator and the change of base formula to approximate $\log_3 17$ to 4 decimal places.

Solve each equation. Round to 4 decimal places, if necessary. 12) $\log_6(x+1) = 2$ 13) $\log(x+5) + \log(x+2) = 1$

14) $3^{x+2} = 7^x$

- 15) Suppose $\log_b 2 = x$ and $\log_b 5 = y$. Use the properties of logarithms to find $\log_b 20$.
- 16) Evaluate $\log_4 64$ and $\log_3 \frac{1}{9}$ without a calculator.

17) Use the properties of logarithms to write the expression as a sum, difference, or product of simpler logarithms. Simplify where possible.

$$\log_4\left(\frac{16p}{\sqrt{q}}\right)$$

18) Find each limit, if it exists. (a) $\lim_{x \to \infty} \frac{3x^2 - 5}{2x - 5x^2}$ (b) $\lim_{x \to -\infty} \frac{5x - 3}{2x^2 + 7x - 1}$

Find each derivative.

19)
$$y = -14e^{2x}$$
 20) $f(x) = -2x^2e^{-3x}$

21)
$$y = \frac{\ln(2x+6)}{x+3}, x > -3$$
 22) $y = (x^3 + e^{2x})^3$

23)
$$f(x) = \frac{e^x(x^2+2)}{\ln x}$$

- 24) Find the slope of the tangent line and the equation of the tangent line to the curve $y = xe^x$ at the point where x = 1.
- 25) Find any open intervals where these functions are increasing.

(a)
$$f(x) = 4x^3 + 8x^2 - 16x + 11$$
 (b) $g(x) = \frac{15}{2x+7}$

Find the locations and values of all relative maxima and minima.

26)
$$f(x) = 2x^3 + 3x^2 - 12x + 5$$
 27) $g(x) = \frac{\ln x}{2x^2}, x > 0$

Find the second derivative of each function.

28)
$$f(x) = 9x^3 + \frac{2}{x}$$
 29) $g(x) = \frac{1-2x}{4x+3}$

30) Find
$$f''(2)$$
 and $f''(5)$ if $f(x) = 2x^2 - 5x^3 + \frac{1}{x^2}$

Sketch a graph of each function using algebra and calculus information.

31)
$$f(x) = 4x + \frac{1}{x}$$
 32) $y = \frac{4x^2}{x^2 + 4}$