MA 22000 Review for Exam 2

1) (a) Find the slope of a line through each pair of points. (b) Find the equation of each line in slope-intercept form. (c) Find the equation of each line in standard form.

$$
A \quad(5,8) \text { and }(-3,-1) \quad B \quad\left(\frac{3}{2}, 2\right) \text { and }\left(-\frac{7}{2},-5\right)
$$

2) Find the equations of a vertical line and a horizontal line through the point $(-5,3)$.
3) Identify which line has (a) positive slope, (b) negative slope, (c) zero slope, and (d) undefined slope.

4) Sketch the graph of each line using the slope and a point.
(a) $y=-\frac{3}{4} x+2$
(b) $3 x-5 y=-15$

5) Find the x-intercept and y-intercept of the line and use the intercepts to graph the line.
$2 x-4 y=8$

6) Find the equation of a line with an x-intercept of $(3,0)$ and a y-intercept of $(0,2)$. Write your answer in standard form.
7) Find the equation in slope-intercept form for a line through $(-1,6)$ with a slope of $-\frac{5}{6}$.
8) An athletic club offers a family membership of $\$ 165$ plus $\$ 60$ for each additional family member after the first. Let x represent the number of additional family members. Write a linear equation in slope-intercept form to represent the membership fee. Use your equation to find the membership fee for a four-person family.
9) In the year 2000 (year 0), the percent of households that had access to high-speed broadband internet service was 9%. By the year 2005 (year 5), the percent of households that had access to high-speed broadband internet service had grown to 37%. This percent has been growing in a linear pattern. (a) Use this information to write 2 ordered pairs and find the slope. (b) Find an equation for the percent in terms of number of years since 2000 (in slope-intercept form). (c) Use your equation to predict what percent of households had high-speed broadband in the year 2010.
10) Complete the table below, then use it to approximate
$\lim _{x \rightarrow-1} f(x)$, where $f(x)=\frac{2 x^{3}+3 x^{2}-4 x-5}{x+1}$.

\boldsymbol{x}	-1.1	-1.01	-1.001	-0.999	-0.99	-0.9
$\boldsymbol{f}(\boldsymbol{x})$						

11) Find the limit values if they exist.
a) $\lim _{x \rightarrow 3}\left(\frac{x^{2}+2 x-15}{x^{2}+x-12}\right)$
b) $\lim _{z \rightarrow 0}\left(\frac{\frac{-1}{z+2}+\frac{1}{2}}{z}\right)$
c) $\lim _{x \rightarrow 16}\left(\frac{\sqrt{x}-4}{x-16}\right)$
d) $\lim _{x \rightarrow \infty}\left(\frac{2 x^{3}-5 x^{2}+9 x}{3 x^{3}-4 x}\right)$
e) $\lim _{x \rightarrow-\infty}\left(\frac{2 x^{2}-5}{3 x^{3}+2 x}\right)$
12) Find the average rate of change for each function over the given interval.
a) $y=-4 x^{2}-6$
$[2,6]$
b) $y=\sqrt{3 x-2}$
$[1,6]$
13) Suppose the position of an object moving in a straight line is given by $s(t)=t^{2}+5 t+2$. Find the instantaneous velocity when $t=5$.
14) Suppose the total profit in hundreds of dollars from selling x items is given by $P(x)=2 x^{2}-4 x+5$. (a) Find the average rate of change of profit for the changes for 2 to 5 items. (b) Find the instantaneous rate of change of profit when $x=2$.
15) Problems 37 on page 176 of the $2^{\text {nd }}$ half of the textbook.
16) The revenue in dollars generated from the sale of x items is given by $R(x)=10 x-\frac{x^{2}}{100}$.
(a) Find the marginal revenue when 500 items have been sold. (b) Estimate the revenue from the sale of the $601^{\text {st }}$ item by finding $R^{\prime}(600)$.

Find the derivative of each.
17) $y=3 x^{5}-6 x^{3}+\frac{1}{2} x^{2}-2 x$
18) $f(x)=10 x^{-4}-\frac{7}{x^{3}}+3 x$
19) $g(x)=\left(2 x^{2}-5\right)^{2}$
20) $y=\left(3 x^{2}+1\right)\left(2 x^{2}-4 x+3\right)$
21) $q(x)=\frac{x^{2}+7 x-2}{x^{2}-2}$
22) Find $f^{\prime}(2)$ if $f(x)=x^{4}-\frac{4}{3} x^{3}+2 x^{2}-5 x+8$.
23) Find all points on the graph of $g(x)=x^{3}+9 x^{2}+19 x-10$ where the slope of the tangent line is -5 .
24) Find an equation of the line tangent to the graph of $f(x)=\frac{x}{x-2}$ at the point $(3,3)$.
25) Assume that the total number (in millions) of bacteria present in a culture at t hours is given by $N(t)=4 t^{2}(t-20)^{2}+20$. Find the rate at which the population of bacteria is changing at 5 hours and at 8 hours.
26) For the functions $f(x)=9-8 x$ and $g(x)=x^{2}+2 x$, find $f(g(x))$ and $g(f(x))$.
27) If $y=f(g(x))$ and $y=-\sqrt{12+5 x}$, write two possible functions $f(x)$ and $g(x)$.

Find the derivative of each.
28) $y=\left(3 x^{4}+12 x^{2}\right)^{5}$
29) $r(t)=8 t\left(3 t^{2}-4\right)^{3}$
30) $y=\frac{2}{\left(4 x^{2}-3\right)^{4}}$
31) Find the equation of the tangent line to the graph of $g(x)=\left(x^{3}+7\right)^{2 / 3}$ at the value $x=1$.
32) The total number of bacteria (in millions) present in a culture after t hours after the beginning of an experiment is given by $N(t)=3 t \sqrt{5 t+9}$. Find the rate of change of the population of bacteria with respect to time after 0 hours and after 8 hours.

