MA 231

1. Find
$$y'(1)$$
 if $y = 2(4x^3 - x)(x - 1)$.

Answer: 6.

2. Find
$$\left. \frac{\mathrm{d}y}{\mathrm{d}x} \right|_{x=\pi}$$
 if $y = \frac{x \cos x}{1 + \sin x}$.

Answer: $-1 - \pi$.

3. Find
$$\frac{dy}{dx}$$
 if $y = \left(\frac{3x-4}{5x+3}\right)^4$.
Answer: $\frac{116(3x-4)^3}{(5x+3)^5}$.

4. Find f'(0) if $f(x) = (4 + x^2)^5 \tan x$.

Answer: 1024.

5. Let
$$f(u) = \frac{u+1}{u-1}$$
, and $g(x) = x^2$. Find $(f \circ g)'(2)$.
Answer: $-\frac{8}{9}$.

6. The population P, in thousands, of a small city is given by

$$P(t) = 10 + \frac{5t}{t^2 + 16},$$

where t is the time, in years. The derivative of P(t) is

$$P'(t) = \frac{-5t^2 + 80}{(t^2 + 16)^2}.$$

Find the growth rate at t = 2 year.

Answer: 0.15 thansands per year.

7. The position of a moving object, in feet, after t seconds, is given by

 $s(t) = \sec t + \cos t.$

Find the acceleration of the object at $t = \frac{\pi}{3}$.

Answer: $\frac{27}{2} ft/s^2$.

8. Find the slope of the line tangent to the curve $y = x^2 \sqrt{(2x+1)}$ passing through the point (4,48).

Answer: $\frac{88}{3}$.

9. The domain of f(x) is all real numbers, and its first derivative is $f'(x) = \frac{x^2 - 4}{(x - 1)^2 + 1}$. Find the number of critical points of f(x).

Answer: 2.

10. The first derivative of $f(x) = 12 - 72x^2 + 4x^3 + 3x^4$ is $f'(x) = -144x + 12x^2 + 12x^3$. Find the relative extrema of f(x) if they exist. You only need to list the x-coordinates if they exist.

Answer: relative max at x = 0, relative min at x = -4 and x = 3.

11. Find the inflection points of $f(x) = 125 + 20x^4 - 3x^5$ if they exist. You only need to list the x-coordinates if they exist.

Answer: x = 4.

12. How many of the following statements are true?

- a. If f''(x) > 0 on an interval I, then f is increasing on that interval.
- b. If f''(x) = 0 at x = c, then (c, f(c)) is an inflection point of f(x).
- c. If f(x) has a critical point at x = c, then f(x) changes from increasing to decreasing, or from decreasing to increasing at x = c.

Answer: 0.