Study Guide # 3

You also need Study Guides # 1 and # 2 for the Final Exam

1. Line integral of a function f(x, y, z) along C, parameterized by x = x(t), y = y(t), z = z(t) and $a \le t \le b$, is

$$\int_C f(x,y,z) \ ds = \int_a^b f(x(t), y(t), z(t)) \sqrt{\left(\frac{dx}{dt}\right)^2 + \left(\frac{dy}{dt}\right)^2 + \left(\frac{dz}{dt}\right)^2} \ dt \ .$$

(independent of orientation of C, other properties and applications of line integrals of f)

Remarks:

(a) $\int_C f(x,y,z) ds$ is sometimes called the "line integral of f with respect to arc length"

(b)
$$\int_C f(x, y, z) dx = \int_a^b f(x(t), y(t), z(t)) x'(t) dt$$

(c)
$$\int_C f(x, y, z) dy = \int_a^b f(x(t), y(t), z(t)) y'(t) dt$$

(d)
$$\int_C f(x, y, z) dy = \int_a^b f(x(t), y(t), z(t)) z'(t) dt$$

2. Line integral of vector field $\mathbf{F}(x,y,z)$ along C, parameterized by $\mathbf{r}(t)$ and $a \leq t \leq b$, is given by

$$\int_{C} \mathbf{F} \bullet d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}'(t) dt.$$

(depends on orientation of C, other properties and applications of line integrals of f)

3. Connection between line integral of vector fields and line integral of functions:

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C (\mathbf{F} \cdot \mathbf{T}) \, ds$$

where T is the unit tangent vector to the curve C.

4. If $\mathbf{F}(x, y, z) = P(x, y, z) \mathbf{i} + Q(x, y, z) \mathbf{j} + R(x, y, z) \mathbf{k}$, then

$$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C P(x, y, z) \, dx + Q(x, y, z) \, dy + R(x, y, z) \, dz;$$

Work = $\int_C \mathbf{F} \cdot d\mathbf{r}$.

5. Fundamental Theorem of Calculus for Line Integrals: $\int_C \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$:

- **6.** A vector field $\mathbf{F}(x,y) = P(x,y)\mathbf{i} + Q(x,y)\mathbf{j}$ is conservative (i.e. $\mathbf{F} = \nabla f$) if $\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y}$. If $\mathbf{F}(\mathbf{x}) = \nabla f(\mathbf{x})$, then $f_x = P$ and $f_y = Q$. Start out with integrating one of the equation and use the other to get the constant. Similarly, a vector field $\mathbf{F}(x, y, z) = P(x, y, z) \mathbf{i} + Q(x, y, z) \mathbf{j} + R(x, y, z) \mathbf{k}$ is conservative (i.e. $\mathbf{F} = \nabla f$) if $\frac{\partial^2 P}{\partial y \partial z} = \frac{\partial^2 Q}{\partial x \partial z} = \frac{\partial^2 R}{\partial x \partial y}$.
- 7. Green's Theorem: $\int_C P(x,y) dx + Q(x,y) dy = \iint_D \left(\frac{\partial Q}{\partial x} \frac{\partial P}{\partial y} \right) dA$ (C = boundary of D):

As a consequence of Green's Theorem one has

$$\frac{1}{2} \int_C x \, dy - y \, dx = \int_C x \, dy = -\int_C y \, dx = Area(D)$$

8. Del Operator: $\frac{\partial}{\partial x} \mathbf{i} + \frac{\partial}{\partial y} \mathbf{j} + \frac{\partial}{\partial z} \mathbf{k}$; if $\mathbf{F}(x, y, z) = P(x, y, z) \mathbf{i} + Q(x, y, z) \mathbf{j} + R(x, y, z) \mathbf{k}$, then

curl
$$\mathbf{F} = \nabla \times \mathbf{F} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix}$$
 and div $\mathbf{F} = \nabla \cdot \mathbf{F} = \frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}$ at curl $(\nabla f) = 0$. Some properties of curl and divergence:

Note that $\operatorname{curl}(\nabla f) = 0$. Some properties of curl and divergence:

- (i) If curl $\mathbf{F} = \mathbf{0}$, then \mathbf{F} is a conservative vector field (i.e., $\mathbf{F}(\mathbf{x}) = \nabla f(\mathbf{x})$).
- (ii) If curl $\mathbf{F} = \mathbf{0}$, then \mathbf{F} is *irrotational*; if div $\mathbf{F} = \mathbf{0}$, then \mathbf{F} is *incompressible*.
- **9.** Parametric surface S: $\mathbf{r}(u,v) = \langle x(u,v), y(u,v), z(u,v) \rangle$, where $(u,v) \in D$:

Normal vector to surface $S: \mathbf{n} = \mathbf{r}_u \times \mathbf{r}_v$; tangent planes and normal lines to parametric surfaces.

10. Surface area of a surface S:

(i)
$$A(S) = \iint_D dS = \iint_D |\mathbf{r}_u \times \mathbf{r}_v| dA$$

(ii) If S is the graph of
$$z = h(x, y)$$
 above D, then $A(S) = \iint_D \sqrt{1 + \left(\frac{\partial h}{\partial x}\right)^2 + \left(\frac{\partial h}{\partial y}\right)^2} dA$.

(iii) If S is the surface of revolution obtained from y = f(x) revolving about the x-axis, $a \le x \le b$, then

$$\mathbf{r}(x,\theta) = \langle x, f(x)\cos\theta, f(x)\sin\theta\rangle, \qquad D = \{(x,\theta) \mid a \le x \le b, \ 0 \le \theta \le 2\pi\}.$$

Then

$$|\mathbf{r}_x \times \mathbf{r}_\theta| = f(x)\sqrt{1 + [f'(x)]^2}$$

Then the area of S becomes:

$$A(s) = \int_0^{2\pi} \int_a^b f(x)\sqrt{1 + [f'(x)]^2} \, dx \, d\theta = 2\pi \int_a^b f(x)\sqrt{1 + [f'(x)]^2} \, dx.$$

<u>Remark</u>: $dS = |\mathbf{r}_u \times \mathbf{r}_v| dA = \text{differential of surface area; while } d\mathbf{S} = (\mathbf{r}_u \times \mathbf{r}_v) dA$

11. The surface integral of f(x, y, z) over the surface S:

(i)
$$\iint_{S} f(x, y, z) dS = \iint_{D} f(\mathbf{r}(u, v)) |\mathbf{r}_{u} \times \mathbf{r}_{v}| dA.$$

(ii) If S is the graph of z = h(x, y) above D, then

$$\iint_{S} f(x, y, z) dS = \iint_{D} f(x, y, h(x, y)) \sqrt{1 + \left(\frac{\partial h}{\partial x}\right)^{2} + \left(\frac{\partial h}{\partial y}\right)^{2}} dA.$$

12. Recall,

$$\mathbf{n} = \frac{\mathbf{r}_u \times \mathbf{r}_v}{|\mathbf{r}_u \times \mathbf{r}_v|}, \qquad d\mathbf{S} = (\mathbf{r}_u \times \mathbf{r}_v) \ dA = \frac{\mathbf{r}_u \times \mathbf{r}_v}{|\mathbf{r}_u \times \mathbf{r}_v|} \ (|\mathbf{r}_u \times \mathbf{r}_v| \ dA) = \mathbf{n} \, dS.$$

The surface integral of \mathbf{F} over the surface S

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) \, dA = \iint_{S} (\mathbf{F} \cdot \mathbf{n}) \, dS$$

If S is the graph of z = h(x, y) above D, with **n** oriented upward, and $\mathbf{F} = \langle P, Q, R \rangle$, then

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \left(-P \frac{\partial h}{\partial x} - Q \frac{\partial h}{\partial y} + R \right) dA.$$

(i) Connection between surface integral of a vector field and a function:

$$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} (\mathbf{F} \cdot \mathbf{n}) \ dS.$$

The above gives another way to compute $\iint_S \mathbf{F} \cdot d\mathbf{S}$.

(ii) $\iint_S \mathbf{F} \cdot d\mathbf{S} = \iint_S (\mathbf{F} \cdot \mathbf{n}) \ dS = \underline{flux} \text{ of } \mathbf{F} \text{ across the surface } S.$

3

13. STOKES' THEOREM: $\int_C \mathbf{F} \cdot d\mathbf{r} = \iint_S \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} \quad (\operatorname{recall}, \operatorname{curl} \mathbf{F} = \nabla \times \mathbf{F}).$

 $\int_C \mathbf{F} \cdot d\mathbf{r} = circulation \text{ of } \mathbf{F} \text{ around } C.$

14. The Divergence Theorem/Gauss' Theorem: $\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iiint_{E} \operatorname{div} \mathbf{F} \ dV$ (recall, $\operatorname{div} \mathbf{F} = \nabla \cdot \mathbf{F}$).

${f 15.}$ Summary of Line Integrals and Surface Integrals:

Line Integrals	Surface Integrals
$C: \mathbf{r}(t)$, where $a \leq t \leq b$	$S: \mathbf{r}(u, v), \text{ where } (u, v) \in D$
$ds = \mathbf{r}'(t) dt = \text{differential of arc length}$	$dS = \mathbf{r}_u \times \mathbf{r}_v dA = \text{differential of surface area}$
$\int_C ds = \text{ length of } C$	$\iint_{S} dS = \text{ surface area of } S$
$\int_C f(x, y, z) ds = \int_a^b f(\mathbf{r}(t)) \mathbf{r}'(t) dt$	$\iint_{S} f(x, y, z) dS = \iint_{D} f(\mathbf{r}(u, v)) \mathbf{r}_{u} \times \mathbf{r}_{v} dA$
(independent of orientation of C)	(independent of normal vector \mathbf{n})
$d\mathbf{r} = \mathbf{r}'(t) dt$	$d\mathbf{S} = (\mathbf{r}_u \times \mathbf{r}_v) \ dA$
$\int_{C} \mathbf{F} \cdot d\mathbf{r} = \int_{a}^{b} \mathbf{F}(\mathbf{r}(t)) \cdot \mathbf{r}'(t) dt$	$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{D} \mathbf{F}(\mathbf{r}(u, v)) \cdot (\mathbf{r}_{u} \times \mathbf{r}_{v}) \ dA$
(depends on orientation of C)	depends on normal vector $\mathbf{n} = \frac{\mathbf{r}_u \times \mathbf{r}_v}{ \mathbf{r}_u \times \mathbf{r}_v }$
$\int_C \mathbf{F} \cdot d\mathbf{r} = \int_C (\mathbf{F} \cdot \mathbf{T}) \ ds$	$\iint_{S} \mathbf{F} \cdot d\mathbf{S} = \iint_{S} (\mathbf{F} \cdot \mathbf{n}) \ dS$
The $circulation$ of ${\bf F}$ around C	The $flux$ of \mathbf{F} across S in direction \mathbf{n}

16. Integration Theorems:

Fundamental Theorem of Calculus: $\int_a^b F'(x) dx = F(b) - F(a)$

Fundamental Theorem of Calculus For Line Integrals: $\int_a^b \nabla f \cdot d\mathbf{r} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$

Green's Theorem: $\iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA = \int_C P(x, y) dx + Q(x, y) dy$

Stokes' Theorem: $\iint_{S} \operatorname{curl} \mathbf{F} \cdot d\mathbf{S} = \int_{C} \mathbf{F} \cdot d\mathbf{r}$

DIVERGENCE THEOREM: $\iiint_E \operatorname{div} \mathbf{F} \ dV = \iint_S \mathbf{F} \cdot d\mathbf{S}$

